

Typical Application Connections

TEXMATE

SD-60XI

4-20mA Loop Powered Display & Dual Totalizer

6-Digit with 0.5" LCD Display, 1/8 DIN Ultra Short Depth Case

Compatibility

The 1/8 DIN case style and panel appearance of the SD-60XI meter matches Texmate's range of Lynx, Leopard, and Tiger 320 Series meter families. The depth behind the panel is only 15 mm (0.59"), increasing to just 27.5 with a connector attached. The SD-60XI makes an ideal extra or remote display as it can operate in conjunction with the 4-20 mA loop input, or from the 4-20 mA analog output of most Leopard or Tiger 320 Series meters.

General Features

- Friendly front panel programming.
- Intuitive, user friendly calibration procedures.
- Single input channel with dual totalizers for sub and grand total processing.
- Smart digital filtering and programmable input averaging with averaging window for quick response time to large signal changes.
- Three external inputs using contact closures for resetting totalizer 1, totalizer 2, or preventing programming changes.
- One independent programmable setpoint.
- Setpoint activated from input or selected meter function.
- Setpoint hysteresis or deviation mode settings.
- Seven (7) relay timer modes.
- Single 210 mA, 400 VDC solid state relay (SSR).
- Relay latching.
- Manual relay reset.
- Programmable safety lockout to prevent tampering.
- Peak and valley retention.
- Optional NEMA-4 front cover.
- Square root extraction.

Table of Contents

Calibration Mode6
Case Dimensions
Connector Pinouts40
Controls and Indicators2
Custom Faceplates41
Customer Code Settings43
Display Format Mode
Display Source Mode
Document Revision History44
Functional Diagram40

Meter Programming Logic Trees5
Model and Software Code Version Check
Ordering Information
Programming Conventions4
Setpoint Programming Mode
Signal Filtering Mode16
Specifications
Totalizer Mode

Specifications

Input Configuration:	.Series connection to 4-20 mA DC current loop. 3.4 volts drop plus 20 Ω (equivalent to 3.9 V @ 20 mA), plus 2.3 V drop if SSR installed					
Relay Output:	Single solid state relay (SSR). Max 210 mA, 400 VDC ONLY					
Display:	7-segment, 0.5" Liquid Crystal Display (LCD)					
Polarity:	Assumed positive, displays – negative					
Display Range:	199999 to 999999					
Display Update:	0.5 secs					
Internal Resolution:	16-bits					
A/D Converter:	16-bit Sigma Delta					
Accuracy (Standard):	$\pm 0.02\%$ of reading ± 2 digit (typical)					
Conversion Rate:	10 samples per second					
Temp. Coefficient:	Typically 30 ppm/ °C					
Descriptors:	Any ASCII character selectable					
Decimal Point:	Front panel, user programmable to five positions					
Operating Temperature	: -10°C to +50°C					
Storage Temperature:	20°C to +70°C					
Warm Up Time:	1 minute					
Relative Humidity:	95% (non-condensing)					
Case Dimensions:	1/8 DIN, Bezel: 96x48 mm (3.78"x1.89"). Depth behind bezel 15 mm (0.59") plus 16.4 mm (0.65") for right-angled connector					

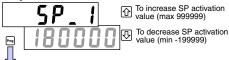
Weight:	ight:56.7 gms (2 oz) 141.7 gms (5 oz) when packed						
Case Material:	Polycarbonate						
Lens Cover:	NEMA-4, (optional)						
Underrange Indication:	on:Input signal below approx. 3.3 mA dis- plays [LOW input] reading						
Overrange Indication:	Input signal above approx. 27.7 mA displays [OVER] reading						
	Signal BELOW 3.3 mA LOUJ INPUE						
Programming Buttons							
PROGRAM:	PROGRAM:Move from one program step to the next						
UP:	Increase the value of the displayed parameter						
DOWN:	Decrease the value of the displayed parameter						
Application Function	s						
Totalizer:Two totalizers are available. The totalizer calculates the running total of a process signal being metered by accumulating an input process variable over time							
Peak and Valley:	and Valley:						
Setpoints:	Setpoints:SP1 resets a selected function and / or activates Relay 1						

Controls and Indicators

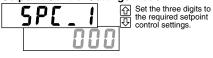
Front Panel Controls and Indicators

Program Button

Pressing the \mathbb{P} and $\widehat{}$ buttons at the same time enters the main programming mode. This allows you to configure the meter's main functions.



Signal Filtering Mode **Display Source Mode Display Format Mode**


Pressing the \square and \bigcirc buttons at the same time enters the setpoint programming mode.

₽rog₽

Setpoint Activation Value Mode

Setpoint Control Settings Mode

While programming, pressing the Programming button saves the current programming settings and moves on to the next programming step or mode.

To save a new mode configuration setting and return to the operational display, press the model button once and then press the \mathbb{M} and $\widehat{\Box}$ buttons at the same time.

You can move through the programming modes using the Prog button while [SKiP] toggles with the mode name. The modes you pass are not affected unless you enter using the 💮 button and make changes using the 1 or 2 buttons.

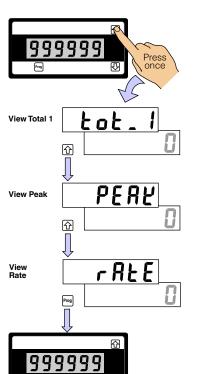
Up Button

When setting a displayed parameter during programming, press the 🖄 button to increase the value of the displayed parameter.

UP Button View Mode

When in the operational display, pressing the button initiates a viewing mode that allows you to view the readings on total 1, peak, and channel 1. Once into the viewing mode, pressing the 1 button moves through each displayed parameter.

Press the Prog button to return to the operational display.


Down Button

When setting a displayed parameter during programming, press the 🕑 button to decrease the value of the displayed parameter.

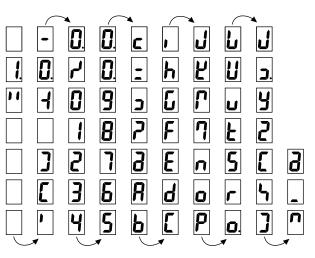
DOWN Button View Mode

When in the operational display, pressing the 🕑 button initiates a viewing mode that allows you to view the readings on total 2, valley, and setpoint 1. Once into the viewing mode, pressing the 🕑 button moves through each displayed parameter.

Press the me button to return to the operational display.

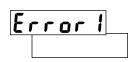
囹

Prog



7-Segment LCD Displays

The 6-digit, 7-segment LCD display is used to display the meter input signal readings. They also display the configuration modes and settings during programming.


Last Digit ASCII Character Set

One of the following ASCII characters can be selected as a descriptor in the last digit. The arrows show the order the characters appear when pressing the $\widehat{\Box}$ button during programming.

Error 1 Message

An Error 1 message can occur during calibration procedures. The three most likely causes of an error 1 message are:

- 1) The scaling requirement exceeded the capability of the meter (-199999 to +999999).
- 2) No input signal present, or no difference between low and high input during calibration.
- 3) Incorrect connections.

Low Input Message

The [LoW inPut] message occurs when the current loop current is enough to light the display, but not enough to drive the meter software. This occurs at approximately 3.3 mA.

The [oVEr] message occurs when the current loop current goes overrange. This occurs at approximately 27.7 mA.

ollEr

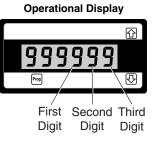
Rear Panel Controls and Indicators

Programming Lockout Pin

When connected to the GND (ground) pin, the LOCK pin prevents any programming changes being made to the meter. If an attempt is made to enter the main or setpoint programming mode, the meter immediately displays the word [LoCKEd]. Further pressing the Proj button enters the relevant mode but settings cannot be

changed.

Totalizer 1 Reset Pin


When connected to the GND pin, the RST1 pin resets totalizer 1 to zero.

Totalizer 2 Reset Pin

When connected to the GND pin, the RST2 pin resets totalizer 2 to zero.

Programming Conventions

The meter uses a set of intuitive software modes to allow maximum user flexibility while maintaining an easy programming process. When configuring the setpoint programming mode, the meter uses the three righthand side display digits. These are known as the first, second, and third digits and can be seen in the diagram opposite.

To explain software configuration procedures, diagrams are used to visually describe the programming steps. The following conventions are used to represent the buttons and indicators on the meter, and the actions involved in programming the meter:

Symbol Operational Display

999999

Explanation

This symbol represents the **OPERATIONAL DISPLAY**. After the meter has been powered up, the display settles and indicates the calibrated input signal. This is known as the operational mode and is generally referred to as the operational display throughout this document.

All programming modes are entered from this level.

This symbol represents the **PROGRAM** button.

In a procedure, pressing the program button is always indicated by a **left hand**. A number indicates how many times it must be pressed and released.

刅

This symbol represents the **UP** button.

Shown in a diagram, pressing the UP button is always indicated by a **right hand**.

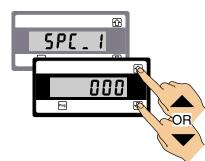
This symbol represents the DOWN button.

Shown in a diagram, pressing the DOWN button is always indicated by a **right hand**.

Where two right hands are shown on the same diagram with the word OR between them, this indicates that both the O and O buttons can be used to adjust the dis- play: UP for increase, DOWN for decrease.

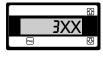
[Span] [10000] Text or numbers shown between square brackets in a description or procedure indicate the programming mode name of the function or the value displayed on the meter display. The programming procedures are graphic based with little descriptive text.

Each procedure shows a number of meter panel displays running in procedural steps from the top to the bottom of the page.


If need be, the procedure may run into two columns with the left column running down the page and continuing at the top of the right-hand column. Each action performed by the user is shown as a numbered step.

Each procedural step shows the meter display as it looks before an action is performed. The hand or hands in the procedural step indicate the action to be performed and also how many times, or for how long, the button is to be pressed.

For example, the diagram below shows the meter in the operational display. With a left hand pressing the $\frac{1}{2}$ button and a right hand pressing the $\frac{1}{2}$ button, the user is entering the main programming mode.



Where a left and right hand are shown on separate buttons on the same diagram, this indicates that the buttons must be pressed at the same time.

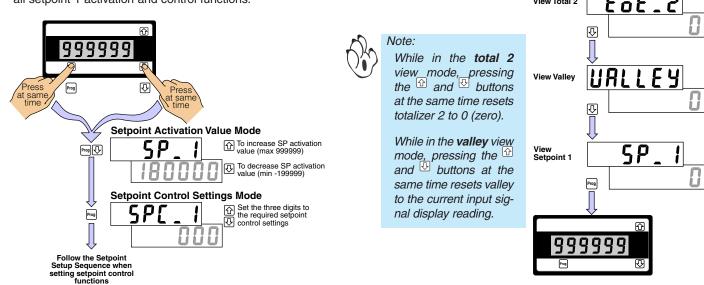
When two displays are shown together as black on grey, this indicates that the display is toggling (flashing) between the name of the function and the value or configuration setting.

Where a number is not definable, the default setting [000] is shown.

If an X appears in the description of a 3-digit setpoint programming mode or in a configuration procedure, this means that more than one choice can be made, or any number displayed in that digit is not relevant to the function being explained.

Meter Programming Logic Trees

The main and setpoint programming modes are accessible from the operational display.

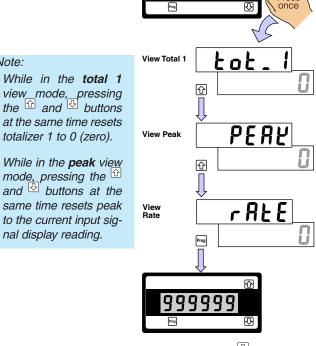

Main Programming Mode

The main programming mode provides access to program all meter functions, except setpoints.

仑 999999 Pres at same \ time 찑 Prog Press at same time **Calibration Mode** E 81 Prog ①To Enter Mode **Totalizer Mode** ERLtot 行 To Enter Mode **Averaging Samples Mode** F, To Enter Mode F ſ **Display Source Mode** 1**6,** 58 Prog ①To Enter Mode **Display Format Mode** ① To Enter Mode Prog d ନ୍ୟ 999999 ₽ Prog

Setpoint Programming Mode

The setpoint programming mode provides access to program all setpoint 1 activation and control functions.



View Modes

Note:

While in the operational display, pressing the 1 button allows you to view but not change the following parameters:

- The current value in totalizer 1.
- The current peak value.
- The current display on rate.

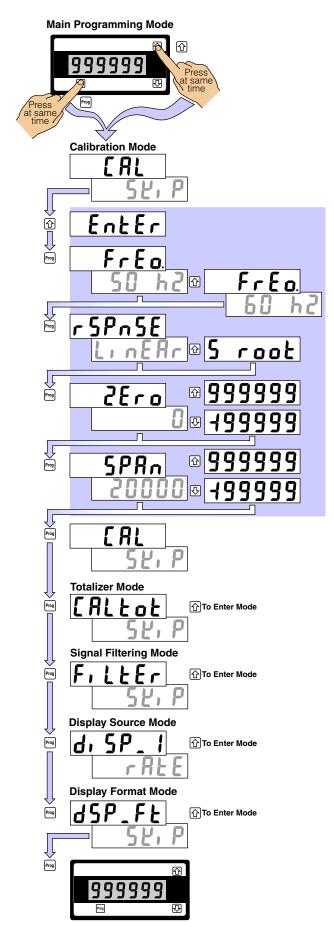
ᢙ

Press

999999

Press

While in the operational display, pressing the 🕑 button allows you to view but not change the following parameters:


Prog

View Total 2

999999

- The current value in totalizer 2.
- The current valley reading.
- The current activation setting for setpoint 1.

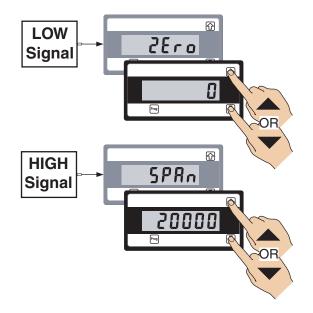
Calibration Mode

Press the $\stackrel{\text{Pog}}{=}$ and $\stackrel{\text{O}}{\oplus}$ buttons at the same time to enter the **m a i n pro- gramming mode**. The **calibration mode** is the first mode that appears. It allows you to:

- Select input frequency rejection of **50** or **60** Hz.
- Select linear or square root response.
- Scale the input signal through zero and span settings.

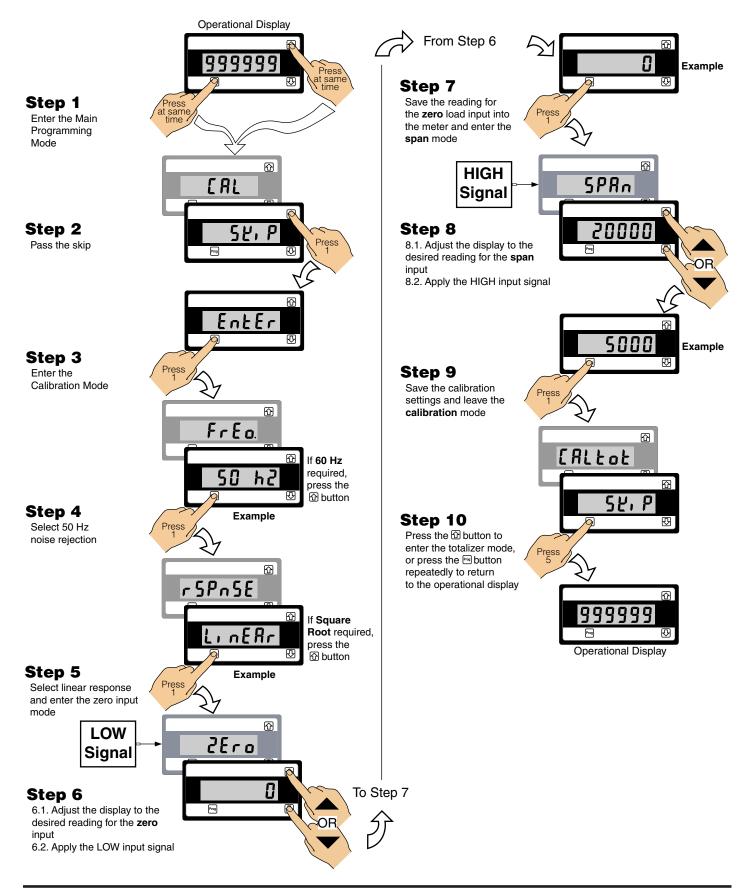
Noise Rejection Selection

Press the 1 button to enter the **calibration mode**. The first s e t t i n g displayed is the **noise rejection setting** [FrEq] [50 hZ]. This setting allows you to chose between 50 and 60 Hz noise rejection.

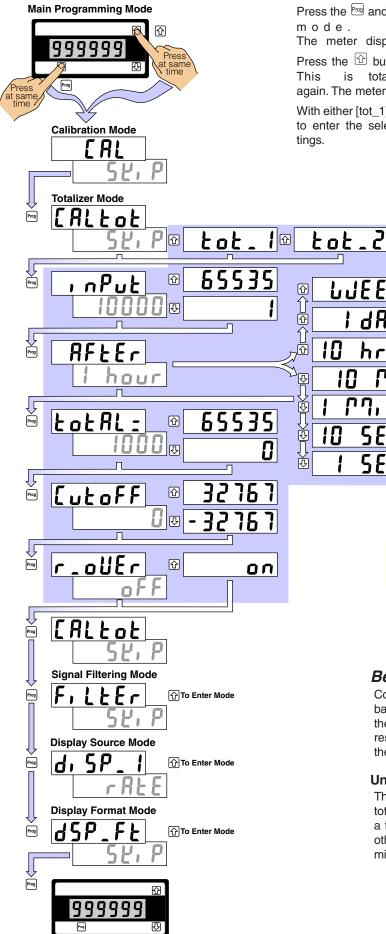

Response Setting

After selecting the noise rejection setting, press the Period button to enter the **response setting** [rSPnSE] [LinEAr].

Input Signal Scaling


This is a two-point calibration procedure that requires a low and high input signal source for calibrating the zero and span settings.

After selecting the response setting, press the $\stackrel{\text{reg}}{=}$ button to enter the **zero setting** [ZEro] [0]. Apply the **low** input source to the meter and, using the 1 and 2 buttons, set the zero setting between -199999 and 999999 counts. When the zero setting has been set, press the 1 button to enter the **span setting** [SPAn] [20000].



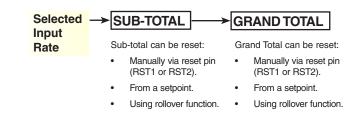
Example Procedure

The following example procedure shows how to calibrate the input signal from 0 to 5,000 counts for a linear signal in the 50 Hz input frequency range.

Totalizer Mode

Press the 🔤 and 🔂 buttons at the same time to enter the main programming Press the Press the button again to skip the calibration mode. mode. The meter displays [CALtot] [SKiP]. This is the totalizer mode.

Press the 1 button to enter the totalizer mode. The meter displays [tot_1]. is totalizer 1. If you wish to configure totalizer 2 press the î button This again. The meter displays [tot_2]. This is totalizer 2.


With either [tot_1] or [tot_2] displayed, pressing the model button again allows you to enter the selected totalizer and configure the required totalizer settings.

Using the Totalizer

A totalizer is a user selectable software function of the meter that converts an input rate to an input total over time. For example:

A customer has a settling tank being filled with water. An SD-60XI meter is connected to the current loop of a flow meter. The flow rate indicates the speed at which the volume of water travels past a set point, but not the total volume accumulated in the tank. The SD-60XI totalizer performs this function and provides the customer with the total amount of water currently in the tank.

The SD-60XI meter has two independent totalizers suitable for a wide variety of totaling and batching applications. Each totalizer can operate independently or combine to generate a sub-total and grand total. Totals can be reset using one of a number of methods. The setpoint can be used to reset a sub-total and increment a grand total.

Before You Start Setting the Totalizer

Configuring the meter for a totalizer application requires some basic settings to be decided beforehand. These settings are the unit input rate, the resolution of the unit input rate, and the resolution of the totalizer. When the settings are known, enter the calibration mode and calibrate the input channel.

Unit Input Rate

ւղենք

10

10

Π

<u>ρ</u>η,

485

hrS

SEC

56(

n

This is the term for the unit amount of the input signal to be totalized in relation to time. For example, the unit input rate of a flow rate of 100 liters per second is liters per second. Some other examples of the unit input rate would be revolutions per minute or joules per hour.

Input Signal Resolution

This uses the position of the decimal point to determine how coarse or how fine the units of the input signal are displayed on the meter.

Input Signal Calibration

The input signal must be calibrated to suit the unit input rate, taking into consideration the required input signal resolution. For example:

If we wanted to display an input flow rate of 350 gallons per minute (GPM) in tenths (0.1) of a gallon, the meter could be scaled to read 0 counts for 0 GPM and 3500 counts for 350 GPM. With the input signal resolution set to tenths, the meter would then display 350.0 counts for 350 GPM, or 276.9 counts for 276.9 GPM.

Totalizer Resolution

This also uses the position of the decimal point to determine resolution. In this case it is how coarse or how fine the units of the totaled amount are displayed on the meter. For example:

Using our 350 GPM flow rate again, we want to display 1 kilogallon for every 1,000 gallons totaled. With the display resolution configured with no decimal point, we would add 1 to the totalizer after 1,000 gallons. But, if we wanted the totalizer to display to the nearest 100 gallons, we would then place the decimal point between the last two digits. Therefore, 1,000 gallons would display as 1.0 on the totalizer, but 1,652 gallons would display as 1.6.

Totalizer Settings

Entering the totalizer settings mode allows you to configure the following settings for the selected totalizer:

- Input Rate. Displayed as:.... ınPut 10000
- Running Time. Displayed as: ...
- Required Total. Displayed as: ...
- Cutoff. Displayed as:
- Rollover. Displayed as:

totR<u>L:</u> 10.00 CutoFF r.oUEr oFF

AftEr | hour

0

Input Rate [inPut]

The input rate has a default setting of 10,000 counts. This can be adjusted to suit the known input rate of an application.

So, using our 350 GPM flow rate example, to display in units of 1 gallon we can adjust the input rate from 10.000 counts to 350 counts. Or, if we wanted to display the total in tenths of a gallon, we can adjust the input rate to 3500 counts, making sure the totalizer resolution is set for tenths (0.1). This gives us a display of 350.0 for 350 GPM.

Running Time [AFtEr]

The running time is the period over which the input rate is accumulated to obtain the required total value. The following running times are selectable in the meter:

Running Times									
Seconds	Minutes	Hours	Days	Weeks					
1	1	1	1	1					
10	10	10	-	-					

Total Required [totAL]

This is the total you wish to see after a selected running time. The time unit of the input rate is normally selected as the running time. For example, if gallons per minute is the rate unit, then you would use 1 minute as the running time. Or, if liters per hour is the rate unit, then you would use 1 hour as the running time.

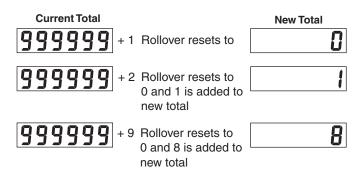
So once again, using our 350 GPM flow rate, the running time is 1 minute. This means that when we set the required total, it is with the understanding that the total is expressed as a unit of gallons per minute. For example:

If we wish to display 1 kilogallon for every 1,000 gallons totaled, we would set the required total to 1.

But, if we wanted the totalizer to display to the nearest 100 gallons, we would have to move the decimal point to add an extra unit. Therefore, instead of setting the required total as 1, we would set it to 10. The 1,000 gallons would then display as 1.0 on the totalizer as long as the input signal resolution is set to 0.1 (tenths).

Cutoff [CutoFF]

This is normally set to 0 to prevent counts being subtracted from the total, but it can be set anywhere from -32767 to 32767 counts, depending on the application.


For example, if the meter is scaled from 0 to 100 counts for a 4-20 mA input and the input power goes off, -25 counts would be subtracted from the total for the 0 mA signal. With cutoff set to 0.0, the totalizer ignores any counts below this setting (i.e. -25 counts).

Rollover [r oVEr]

When set to ON, rollover automatically resets the total to 0 (zero) when the total value exceeds the maximum count of 999,999 on the display by one count. If the total is exceeded by more than one count, the amount over the maximum display is added to the new total.

Note, the rollover mode does not increment any other totalizer to record the rollover.

Rollover Example

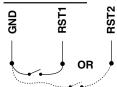
Note: The rollover feature should not be used with the setpoint reset feature as this could cause inaccurate results. See Resetting the Total from a Setpoint.

Resetting the Total

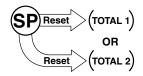

Resetting the total is an important feature of any totalizer or integrator. Both totalizers can be reset using one of the following methods:

- Front Panel ⊕ Buttons. Pressing both the ⊕ and ⊕ buttons on the front panel at the same time when the meter displays total 1 or total 2 in the view mode or operational display resets the selected total back to zero.
- Reset Pins RST1 and RST2. Connecting one of these pins to the GND (ground) pin resets the relevant totalizer back to zero.
- Reset Totalizer 1 or 2 via the Setpoint. Using a setpoint to reset one totalizer is the only method of incrementing the other totalizer.

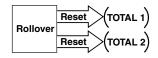
See Resetting the Total from a Setpoint below.


• Reset Totalizer 1 or 2 via Rollover Feature. See previous Rollover description on Page 8.

Press UP and DOWN buttons together



Selected TOTAL reset via Reset Pin

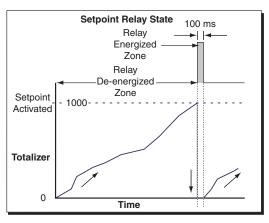

Rear of Meter

Selected TOTAL reset via setpoint

TOTAL 1 and/or TOTAL 2 reset via Rollover

Resetting the Total from a Setpoint

The setpoint trigger & reset functions mode of the setpoint programming mode (see Page 35) allows any selectable function in the meter to be reset. This means that a selected totalizer can be programmed to reset at any setting within the range of the totalizer. This feature also allows one totalizer to be reset while the other totalizer increments by one count (sub-total increments grand total).


The graph on Page 11 uses a flow totalizer example with a subtotal and grand total to show the relationship between volume over time and the sub-total and total functions (either can be selected as total 1 or total 2).

Pulse Output

Some applications require a pulse output to be sent to other equipment such as a remote counting device. This is also a feature of the **setpoint trigger & reset functions mode** of the setpoint programming mode.

While resetting totalizer 1 or totalizer 2, a pulse output from the setpoint relay can increment the display on an external totalizer such as a remote counting device. When the total exceeds the setpoint setting, the setpoint activates and energizes the relay sending a pulse to the counting device. One sample time later (100 ms), the setpoint is not in violation (as it has dropped back to the reset value) and the relay is de-energized.

See Totalizer Example – Advanced Totalizing of a Flow Input on Page 12 for full details on configuring a pulse output from a relay.

Graph showing Pulse Output

Totalizer Programming Sequence

When configuring the meter as a totalizer, the following programming sequence must be followed to ensure that all configuration settings are correctly entered and saved:

Input Signal Calibration

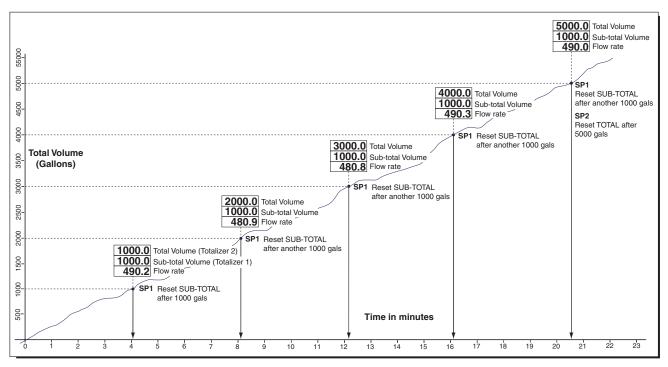
➤1) Set input signal resolution

Enter the **display format mode** [diSP_Ft] and set the resolution of the **rate** setting

2) Set averaging sample & window settings

Enter the signal filtering mode [FiLtEr] and set the averaging samples and averaging window settings of the [rAtE] setting

3) Calibrate the input signal


Enter the **calibration mode** [CAL] and calibrate the input signal

Step (2) Totalizer Resolution

➤1) Set the totalizer resolution

Enter the **display format mode** [dSP_Ft] and set the decimal point to the required resolution for the selected totalizer

Programming sequence continued on next page

Graph showing Flow over Time with Sub-total and Total

Step 3 Totalizer Settings

➤ 1) Configure the totalizer

Enter the **totalizer mode** [CALtot] and configure the following settings:

- a) Set the Input Rate
- b) Set the Running Time
- c) Set the Required Total
- d) Set the Cutoff Setting
- e) Select the Rollover Setting

Step (4) Main Display Source Setting

 \rightarrow 1) Select the data for the main display

Enter the **display source mode** [diSP_1] and select [tot_1], or [tot_2], or [rAtE] as the source for the main display

Input Signal Calibration

Before configuring the totalizer settings:

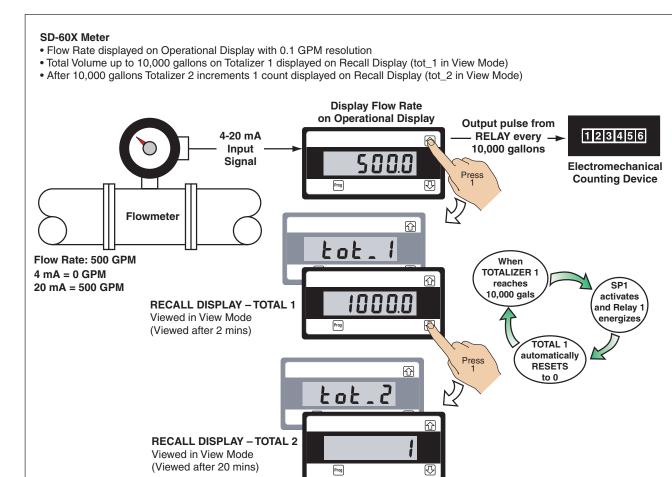
- Set the resolution (position of decimal point) for the [rAtE] setting (input signal) in the display format mode.
- Set the averaging sample and averaging window settings for the [rAtE] setting (input signal) in the signal filtering mode.
- Calibrate the input signal using the meter's built-in two-point calibration mode. The calibration method requires a low and high input signal to be applied when setting the zero and span settings.

Totalizer Resolution

Format the display of the selected totalizer. Select the position of the decimal point to suit your application and, if required, select an ASCII character for the last digit.

Totalizer Settings

Configure the totalizer settings to suit the totalizer application.


Main Display Source Setting

The last step is to select the source for the display. This can be either totalizer 1, totalizer 2, or rate (input signal).

Note:

Instead of directly displaying the totalizer on the main display, you can directly display the input signal (rate). Both totalizers can still be viewed on the recall display using the view mode by pressing the $\textcircled{1}{2}$ button for totalizer 1 and the 2 button for totalizer 2.

Totalizer Settings Example: Advanced Totalizing of a Flow Input

Example – Advanced Totalizing Functions

This section highlights the steps required to configure the meter as an advanced totalizer with pulse output. The example programming procedures on Pages 14 and 15 are written using this example.

In the above example, a 4-20 mA input represents a flow rate of 500 gallons per minute (GPM) with:

- 4 mA representing zero flow, and
- 20 mA representing 500 GPM.

Our customer requires:

- The flow rate displayed in units of 0.1 GPM on the operational display.
- The total volume up to 10,000 gallons calculated and displayed in units of 0.1 of a gallon on the recall display of Totalizer 1 in the **view mode**.
- A second total incremented by 1 count every 10,000 gallons on the recall display of Totalizer 2 in the **view mode**.
- A pulse output every 10,000 gallons to a remote totalizer (electromechanical counting device).

To View Totalizer 1:

Press the 1 button to enter the recall display in the **view mode** and view Totalizer 1.

To View Totalizer 2:

Press the 🕑 button once after viewing the Totalizer 1 recall display to enter the recall display in the **view mode** and view Totalizer 2.

Configuration Settings

To perform as our customer requires in the example, the input signal channel and totalizers 1 and 2 must be configured with the following settings:

Calibrate the Input Signal

1) Enter the calibration mode:

- Set resolution of rate (input signal) to: Tenths
 This positions the decimal point to display flow rate at
 0.1 GPM resolution
- Set averaging filter to required settings for input signal conditions
- Calibrate input signal over 0 to 500.0 GPM (0 to 5000 counts)

Totalizer Mode continued

Configure the Totalizer Display

- 1) Enter the **display source mode** and select rate as the source for the operational display.
- 2) Enter the **display format mode** and set the resolution for total 1 and total 2:
 - Set **resolution** of totalizer **2** to: **Tenths**

This positions the decimal point to display total 1 at 0.1 GPM resolution

Set resolution of totalizer 1 to: Ones

This positions the decimal point to display total 2 in units of 1 per 10,000 gallons

Configure the Totalizer Settings

1) Enter the totalizer mode and configure the following settings:

Total 1

- Set input rate to: 500.0 GPM (5000 counts)
- Set running time to: 1 minute
- Set the required total to: 500.0
- Cutoff: 0
- Rollover: OFF

Total 2

- Set input rate to: 500.0 GPM (5000 counts)
- Set running time to: 1 hour

At input rate of 500 GPM x 20 min, totalizer 2 displays 1 (10,000 gal). So after 1 hour, totalizer 2 displays 3 (30,000 gal).

- Set the required total to: 3 Totalizer 2 displays 1 every 10,000 gallons recorded by totalizer 1
- Cutoff: 0
- Rollover = ON

Setpoint 1 (for Pulse and Reset)

Activation Value:

SP1 Activation Value: 10000.0

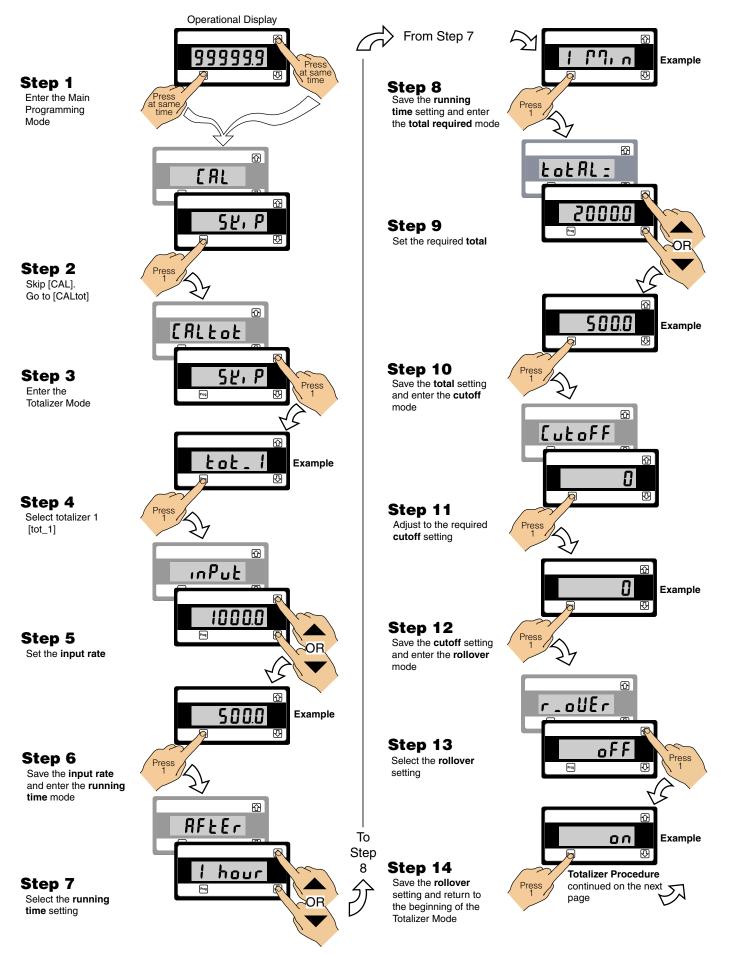
Activation Source Settings:

SP1 Activation Source: Total 1

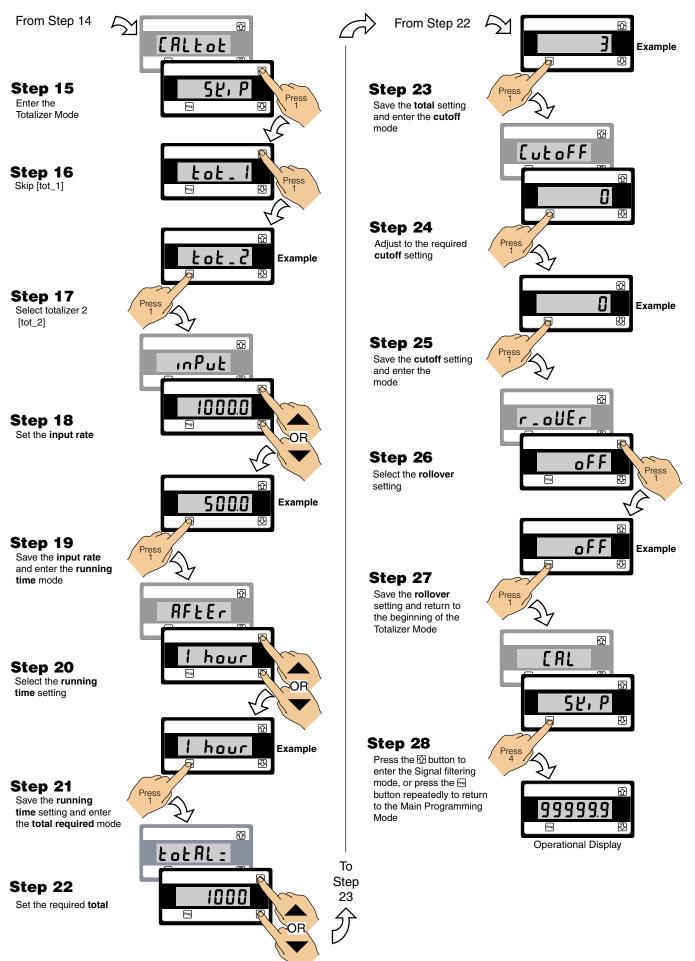
Setpoint Trigger & Reset Functions Settings:

- Reset Trigger: MAKE (reset to 0.0)
- Reset Destination Register: **Total 1**
- Reset Mode: I-S+C
- Reset Constant: 0
- Remaining Settings: OFF

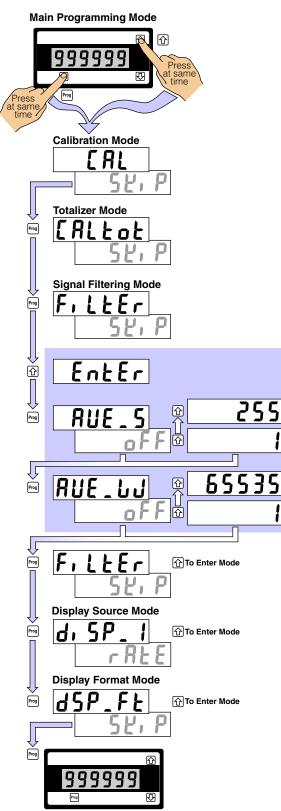
Pulse Output:


 Relay output connected to remote totalizer Increments electromechanical counting device by 1 count every 10,000 gallons

Example Procedure

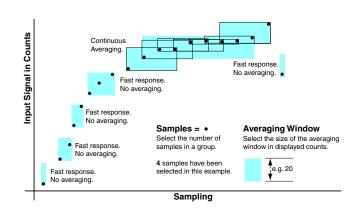

The following example procedure shows how to configure totalizer 1 and totalizer 2 as a sub-total grand total totalizer according to the **totalizer configuration settings** described in the Totalizer Settings Example.

All other configuration settings, such as calibration and setpoint, can be applied to the procedures described for each applicable mode throughout this document.


Totalizer Mode continued

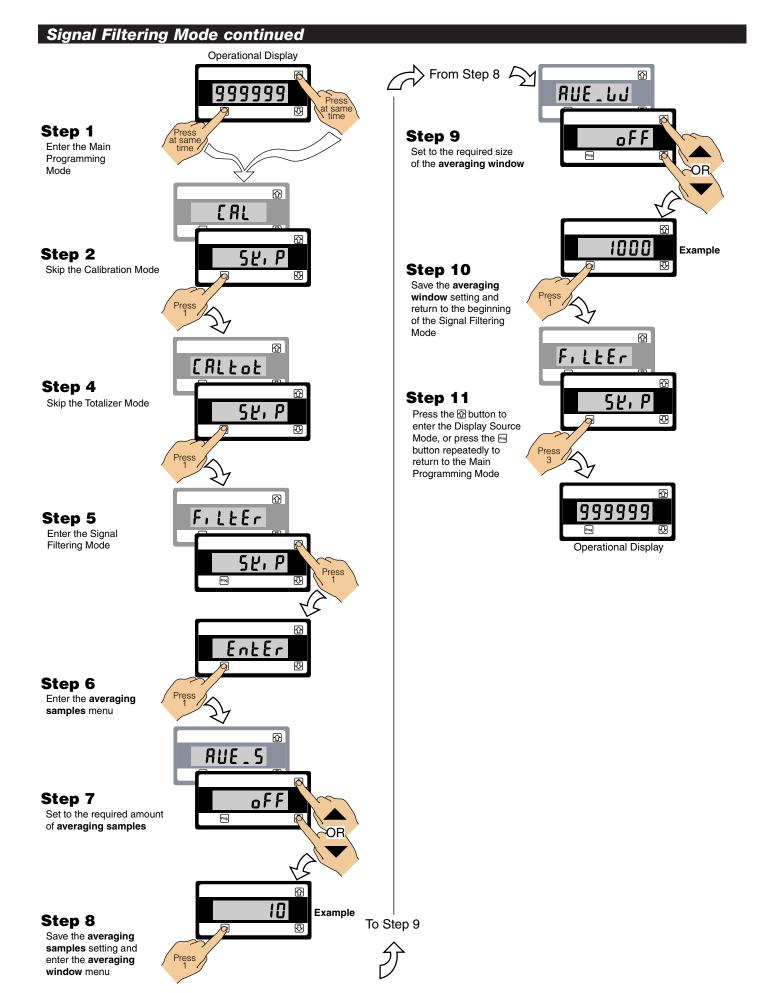
Totalizer Mode continued

Signal Filtering Mode

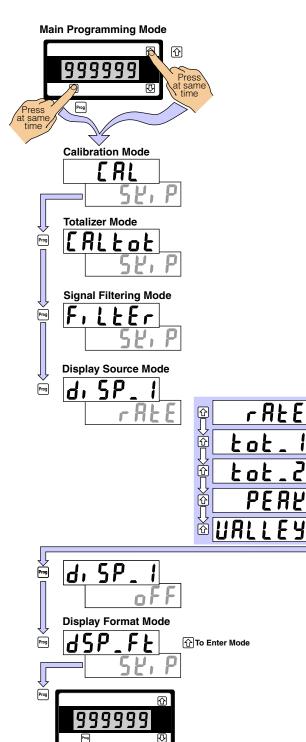


Windowed averaging allows you to average a selected number of input signal samples within a selectable averaging window. This allows you the benefit of a stable signal, with fast response to change when required.

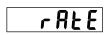
The number of input signal samples to average over is selected in the [Ave_Smpl] menu. The size of the averaging window in input signal display counts is selected in the [Ave_Wndw] menu.


While the signal is being monitored by the controller, the averaging window tracks the input signal, looks at the samples, and when it locates a group of samples within the size of the window, averaging takes place. As each new sample comes into the controller, the last sample in the group is dropped off. Provided the sample group remains within the averaging window, the controller constantly averages the sample group.

If a sample moves out of the averaging window, the controller responds quickly to the change by displaying the non-averaged signal value. When the signal stabilizes, a new averaging window is established around a sample group and averaging resumes.


Example Procedure

The example procedure on Page 17 shows how to configure channel 1 (CH1) with an averaging sample rate of 10 counts and an averaging window of 1000 counts.



02/08/07 SD-60XI (NZ318)

Display Source Mode

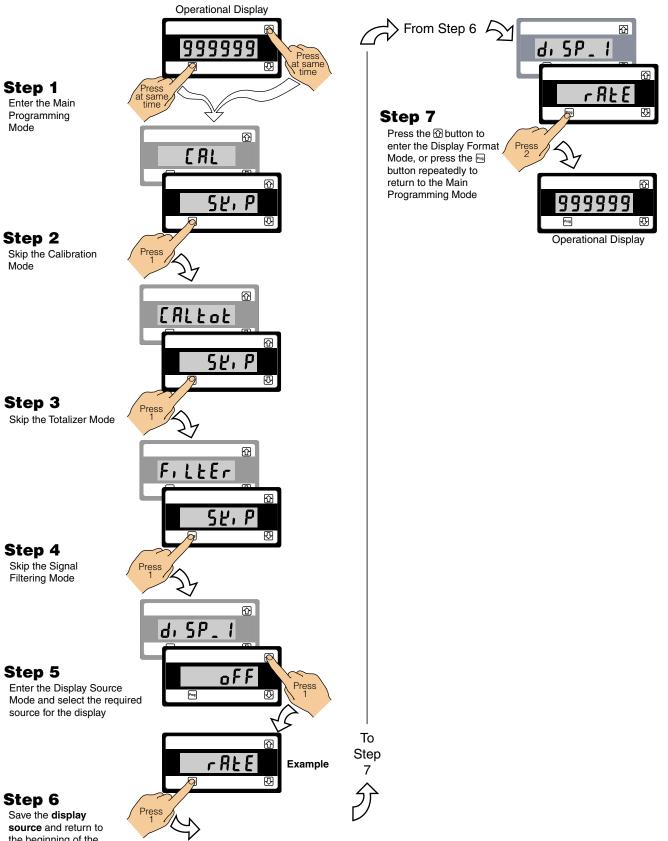
The **display source mode** allows you to select the source for the operational display. This means that any one of the following can be displayed on the operational display while the rest can be viewed on the recall display of the view mode by simply pressing the or button:

This is the input signal from the sensor and is displayed as [rAtE] in the view mode.

This is totalizer 1 and is displayed as [tot_1] in the view mode.

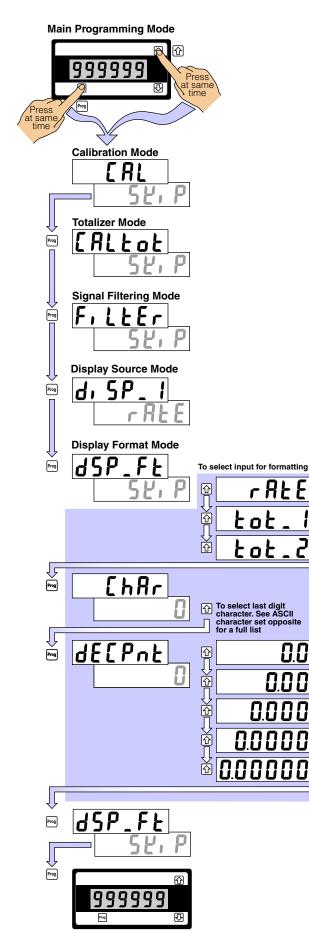
This is totalizer 2 and is displayed as $[tot_2]$ in the view mode.

This is the maximum input signal reading that the meter has recorded since it was last switched on or reset and is displayed as [PEAK] in the view mode.



This is the valley or minimum input signal reading that the meter has recorded since it was last switched on or reset and is displayed as [VALLEY] in the view mode.

Example Procedure


The example procedure on Page 19 shows how to select the input signal (rate) as the displayed reading when the meter is running in the operational display.

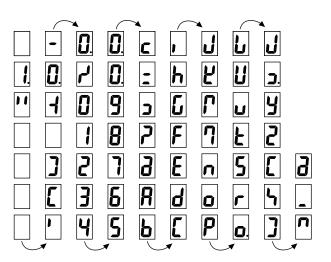
Display Source Mode continued

the beginning of the Display Source Mode

Display Format Mode

The **display format mode** allows you to format how the input signal (rate), total 1, and total 2 are displayed when shown on the operational or recall displays.

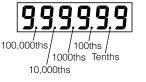
A decimal point can be inserted to adjust the resolution and, if required, a last digit descriptor displayed using one of the 60 ASCII text characters available.


Last Digit Descriptor Menu

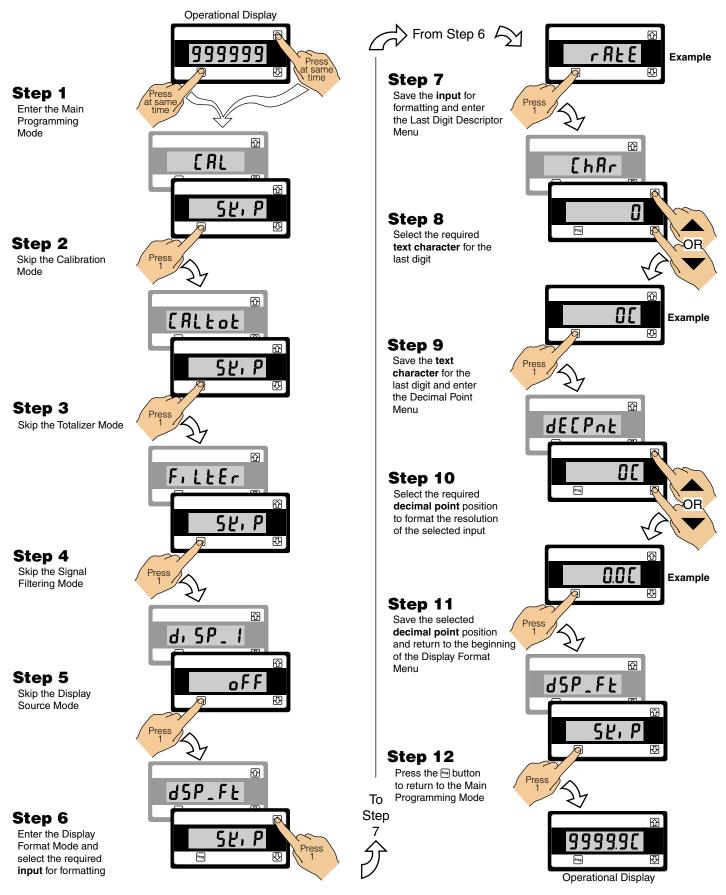
The last digit descriptor menu [ChAr] allows you to select one of 60 available ASCII characters as a descriptor in the last digit. See following ASCII character list.

For example, if the meter was measuring a temperature, the display could be configured to display the reading with a C or an F in the last digit for $^{\circ}$ C or $^{\circ}$ F.

When using a last digit descriptor, the meter effectively becomes a 5-digit display with a minimum reading of –19999 and a maximum reading of 99999 instead of a 6-digit display reading from –199999 up to 999999.


Decimal Point Menu

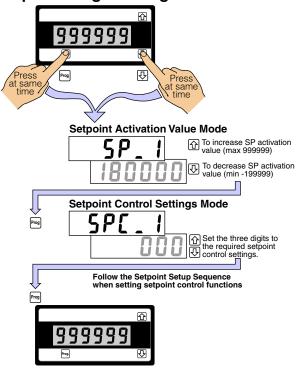
The decimal point menu allows you to set the resolution of the display for the input signal, totalizer 1, and totalizer 2. A decimal point can be placed after any digit or not shown at all. Setting the decimal point can produce the following display resolutions:


- One hundred thousandths (9.99999).
- Ten thousandths (99.9999).
- Thousandths (999.999).
- Hundredths (9999.99).
 - Tenths (99999.9).
 - One (999999) (No decimal point).

Example Procedure

The example procedure on Page 21 shows how to configure the last digit text character as "C" for centigrade (°C) and set the input signal display resolution to tenths.

Display Format Mode continued



Note:

If a last digit descriptor is used the meter is effectively turned into a 5-digit display. The resolution settings automatically adjusted by the meter to remain as set (for example: if set to tenths, the decimal point is moved one digit to the left to maintain its original position).

Setpoint Programming Mode

Setpoint Programming Mode

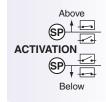
All setpoint activation and control settings are selected and configured using the front panel buttons in the **setpoint programming mode**. The meter has one software driven setpoint configured to operate within the total span range of the meter.

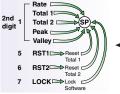
The setpoint programming mode is entered by pressing the \mathbb{P} and \mathbb{P} buttons at the same time.

Relay Output

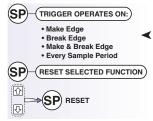
The meter contains a 400 V, 210 mA DC solid state relay (SSR).

Setpoint Activation Value


The setpoint activation value can be set within the total span range of the meter.


Setpoint and Relay Control Settings

Setpoint control settings provide access to the following setpoint and relay functions for configuration using the meter's 1st, 2nd, and 3rd digits. These settings allow you to enter and program the various control functions of the setpoint programming mode:


- 1st Digit Relay energize functions.
- 2nd Digit Setpoint activation source and external switching functions.
- 3rd Digit Relay latching modes, hysteresis & deviation modes, setpoint timer modes, and setpoint trigger & reset functions.

Setpoint Functions

Relay Energize Functions

The setpoint activates at the programmed setpoint value. The relay is programmable to energize above or below the setpoint value.

Setpoint Activation Source

The setpoint can activate from the input signal (rate), totalizer 1, totalizer 2, the peak reading, or the valley reading.

Setpoint Latching

The setpoint can be programmed in various relay latching modes.

Setpoint Reset & Trigger

Setpoint Timer Modes

The setpoint can be programmed to operate the relay in one of the following seven resident timer modes:

Normal Mode Timer

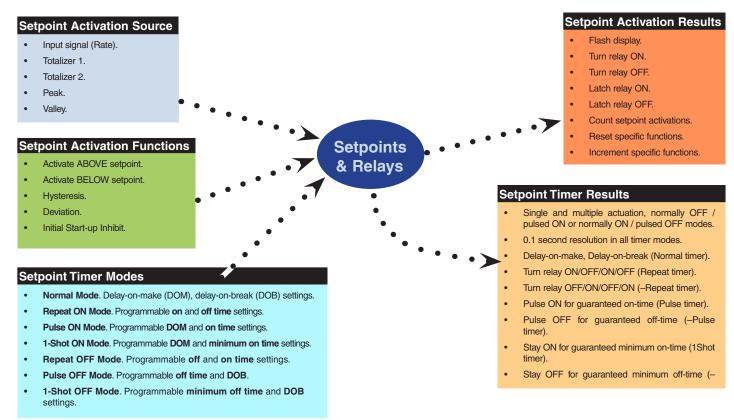
Single actuation, delay-on-make (DOM) and delay-on-break (DOB).

Normally OFF/Pulsed ON Timers

Repeat ON Mode Timer – multiple actuation, programmable off- and on-time.

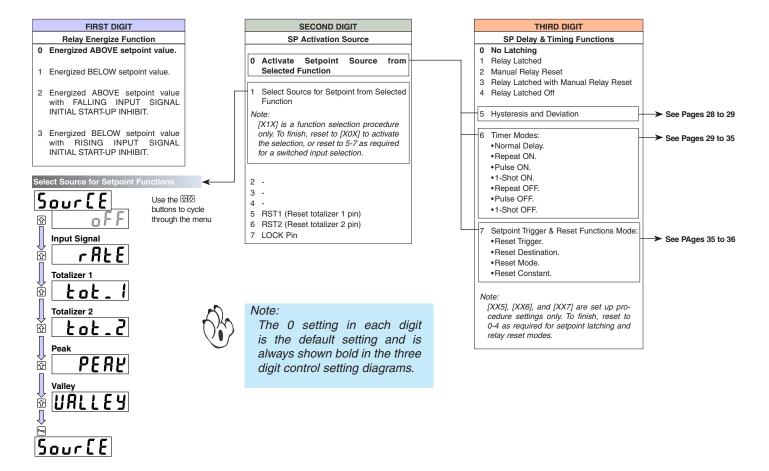
Pulse ON Mode Timer – single actuation, programmable DOM and maximum on-time.

1-Shot ON Mode Timer – single actuation, programmable DOM and minimum on-time.


Normally ON/Pulsed OFF Timers

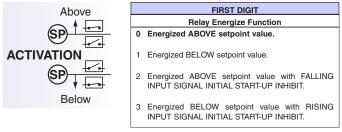
Repeat OFF Mode Timer – multiple actuation, programmable off- and on-time.

Pulse OFF Mode Timer – single actuation, programmable DOB and maximum off-time.


1-Shot OFF Mode Timer – single actuation, programmable DOB and minimum off-time.

Setpoint & Relay Control Settings Diagram

The following diagram shows the three digit control function settings for the setpoint and relay.


02/08/07 SD-60XI (NZ318)

1st Digit Settings – Relay Energize Functions

The relay energize functions are configured as part of the final setpoint settings once all other modes have been configured. See Page 37.

The setpoint activates at the setpoint activation value. The **1st** digit allows you to program the setpoint relay to energize **above** or **below** the setpoint value.

The functionality of the **relay energize functions** are further enhanced with an initial start-up inhibit mode selected in the **1st** digit, and selecting either **hysteresis** or **deviation** with the **3rd** digit set to [XX5].

Initial Start-up Inhibit

The setpoint can also be programmed to energize the relay with or without initial start-up inhibit.

On switch-on when set to either [0XX] or [1XX], initial start-up inhibit prevents the relay from energizing on the first setpoint activation cycle. When set to [2XX] initial start-up inhibit only functions during a falling input signal. When set to [3XX] initial start-up inhibit only functions during a rising input signal. The signal must activate then deactivate the setpoint, and only when the setpoint activates for the second time does the relay energize.

Example 1 shows the relay energize functions with and without initial start-up inhibit.

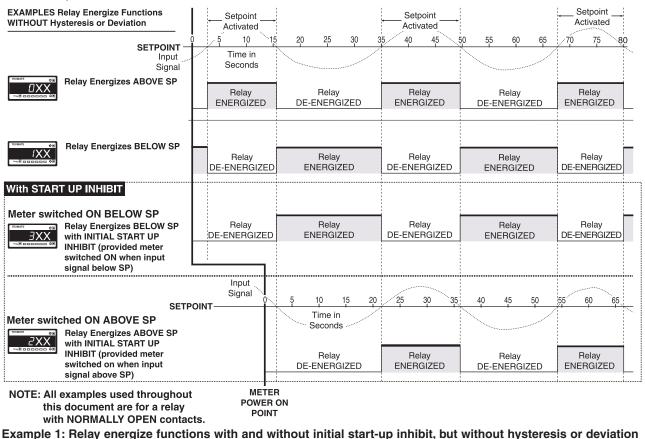
Hysteresis Selected

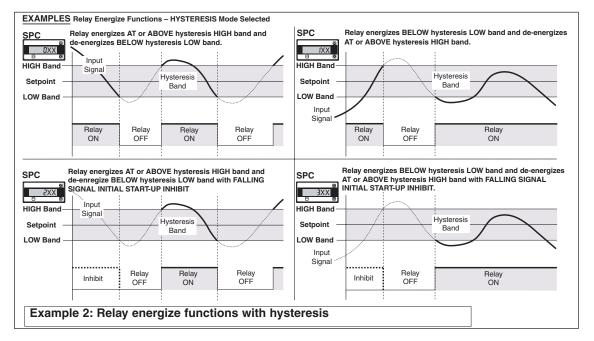
[0X5] Relay Energizes Above SP Value

With 0 selected in the 1st digit, the relay energizes at or above the setpoint value plus the hysteresis counts, then de-energizes below the setpoint value minus the hysteresis counts.

[1X5] Relay Energizes Below SP Value

With 1 selected in the 1st digit, the relay energizes below the setpoint value minus the hysteresis counts, then de-energizes at or above the setpoint value plus the hysteresis counts.


[2X5] Relay Energizes Above SP Value With Initial Start-up Inhibit


With 2 selected in the 1st digit, the relay energizes at or above the setpoint value plus the hysteresis counts, then de-energizes below the setpoint value minus the hysteresis counts. With falling input signal initial start-up inhibit, the signal activates then de-activates the setpoint, and only when the setpoint activates for the second time on a rising signal does the relay energize.

[3X5] Relay Energizes Below SP Value With Initial Startup Inhibit

With 3 selected in the 1st digit, the relay energizes below the setpoint value minus the hysteresis counts, then de-energizes at or above the setpoint value plus the hysteresis counts. With rising input signal initial start-up inhibit, the signal activates then de-activates the setpoint, and only when the setpoint activates for the second time on a falling signal does the relay energize.

Example 2 shows the relay energize functions with hysteresis applied with and without initial start-up inhibit.

Deviation Selected

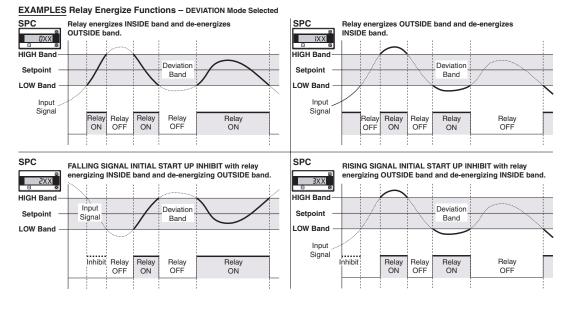
[0X5] Relay Energizes Above SP Value

With 0 selected in the 1st digit, the relay energizes inside the deviation band (setpoint \pm deviation counts), then de-energizes outside the deviation band (setpoint \pm deviation counts).

[1X5] Relay Energizes Below SP Value

With 1 selected in the 1st digit, the relay energizes outside the deviation band (setpoint \pm deviation counts), then de-energizes inside the deviation band (setpoint \pm deviation counts).

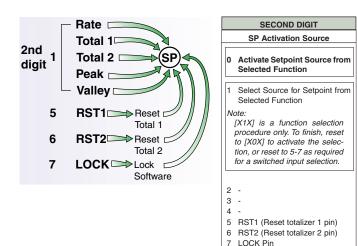
[2X5] Relay Energizes Above SP Value With Initial Start-up Inhibit


With 2 selected in the 1st digit, the relay energizes inside the deviation band (setpoint \pm deviation counts), then de-energizes outside the deviation band (setpoint \pm deviation counts).

With falling input signal initial start-up inhibit, the signal activates then de-activates the setpoint, and only when the setpoint activates for the second time, when the signal comes into the deviation band, does the relay energize.

[3X5] Relay Energizes Below SP Value With Initial Startup Inhibit

With 3 selected in the 1st digit, the relay energizes outside the deviation band (setpoint \pm deviation counts), then de-energizes inside the deviation band (setpoint \pm deviation counts). With rising input signal initial start-up inhibit, the signal activates then de-activates the setpoint, and only when the setpoint activates for the second time, when the signal goes outside the deviation band, does the relay energize.


Example 3 shows the relay energize functions with deviation applied with and without initial start-up inhibit.

Example 3: Relay energize functions with deviation

2nd Digit Settings

The 2nd digit of the setpoint and relay control mode allows you to configure the setpoint activation source. The setpoint can be activated from any of the setpoint activation functions available when the 2nd digit is set to 1, or from one of the listed external switching functions: 2nd digit set to 5, 6, or 7.

Setpoint Activation Source Setup Mode

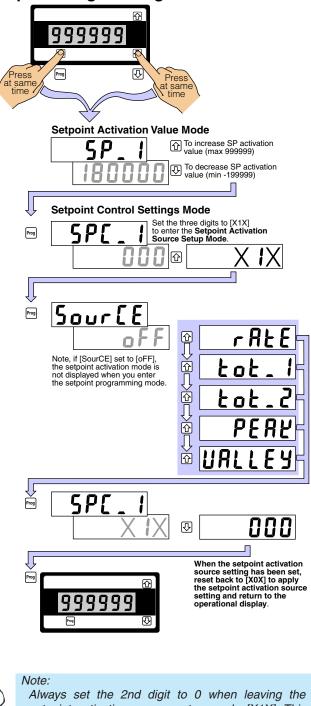
The **setpoint activation source setup mode** allows you to select a function to activate the setpoint. This is done by selecting **1** in the **2nd** digit and then selecting one of the following functions:

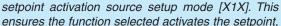
- Input signal (rate).
- Totalizer 1 (total 1).
- Totalizer 2 (total 2).
- The peak reading (peak).
- The valley reading (valley).

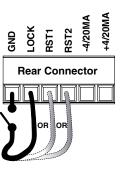
When the activation source has been selected from the activation functions, reset the **2nd** digit back to **0**. This allows you to leave the SP activation source mode and ensures the selected activation function triggers the setpoint.

External Switching Functions

Instead of activating the setpoint using one of the activation functions available by selecting **1** in the **2nd** digit, one of the following external switching functions can also be used to trigger the setpoint:


- RST1 Pin, set to 5 in the 2nd digit.
- RST2 Pin, set to 6 in the 2nd digit.
- LOCK Pin, set to 7 in the 2nd digit.


If selected, the switching function triggers the setpoint and also performs its designated switching function when connected to ground. The switching function overrides any selection you may have made in the setpoint activation source setup mode [X1X].


Even if not selected to activate the setpoint, the external switching function pins operate as follows when connected to ground (GND) using a switch:

- RST1 Pin. Allows you to reset totalizer 1.
- RST2 Pin. Allows you to reset totalizer 2.
- LOCK Pin. Allows you to view the meter's programmed parameters but not make any changes to them.

Setpoint Programming Mode

3rd Digit Settings

The 3rd digit of the setpoint and relay control mode allows you to configure the following:

- Relay latching and manual reset • functions.
- Hysteresis or deviation settings.
- Setpoint timer modes. .
- Setpoint trigger and reset functions.

Reset Relay Latched Off
Manual Relay Reset Relay Latched with Manual Relay Reset Relay Latched Off
Relay Latched with Manual Relay Reset Relay Latched Off
Reset Relay Latched Off
Relay Latched Off
Hysteresis and Deviation Mode
Timer Modes:
Normal Delay.
Repeat ON.
Pulse ON.
 1-Shot ON.
Repeat OFF.
Pulse OFF.
•1-Shot OFF.
Setpoint Trigger & Reset Mode:
Reset Trigger.
 Reset Destination.
Reset Mode.
 Reset Constant.

Relay Latching & Manual Relay Reset

The relay latching and relay reset modes are configured as part of the final setpoint settings once all other modes have been configured.

See Page 37.

The 3rd digit allows you to configure the latching functionality of the setpoint and relay.

Selecting [XX0] to [XX4] allows you to program the setpoint for one of five relay latching and manual reset modes.

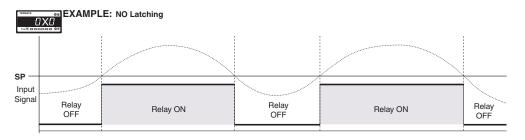
[XX0] No Latching

Selecting [XX0] means that no latching is applied to the setpoints. See Example – No Latching for an example.

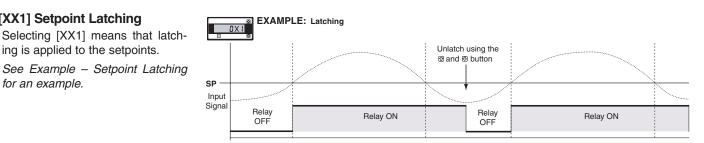
LATCH OFF Л LATCH ON

Setpoint Programming Mode 6 999999 Prog ₽ Press Press at same time at same time Setpoint Activation Value Mode To increase SP activation value (max 999999) ЧP To decrease SP activation value (min -199999) 屳 Setpoint Control Settings Mode ςP Prog Set the three digits to the required setpoint control settings. Follow the Setpoint Setup Sequence when setting setpoint control functions As part of Final Setpoint Settings:

Select the required relay latching or manual relay reset setting In the 3rd digit.


0	NO latching.	
---	--------------	--

Setpoints latched. Manual relay reset. 2


Setpoints latched with manual relay reset

3

Example – NO Latching

Example - Setpoint Latching

[XX1] Setpoint Latching

for an example.

ing is applied to the setpoints.

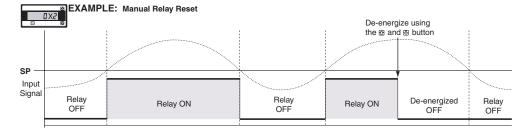
[XX2] Manual Relay Reset

Selecting [XX2] means that the relav can be de-energized (reset) manually by the operator. The relay does not energize again until the setpoint reactivates.

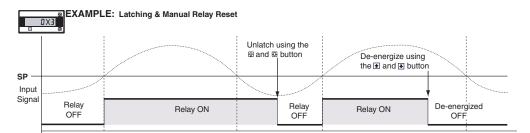
Pressing the
result and
result buttons on the meter's front panel at the same time manually resets the relay setpoint by the operator.

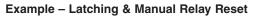
See Example – Manual Relay Reset for an example.

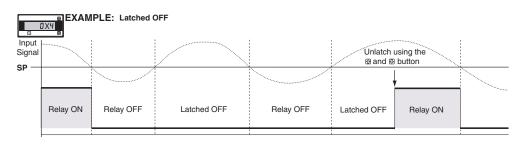
[XX3] Setpoint Latched with **Manual Relay Reset**


Selecting [XX3] means that setpoint latching is applied and the relay can be de-energized (reset) manually by the operator. The relay does not energize again until the next setpoint activation.

See Example – Latching & Manual Relay Reset for an example.

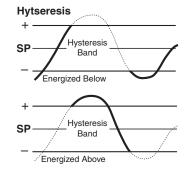

[XX4] Setpoint Latched OFF


Selecting [XX4] means that latching is applied to the setpoint but in the latched OFF mode.

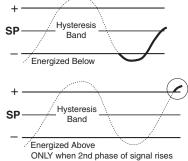

See Example – Latched Off for an example.

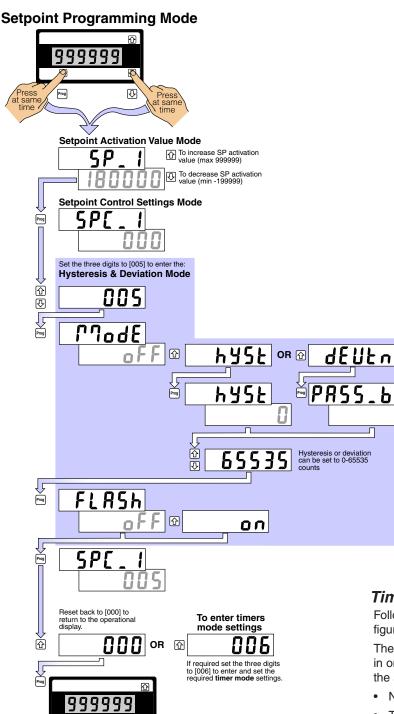
Example – Manual Relay Reset

Hysteresis & Deviation Settings

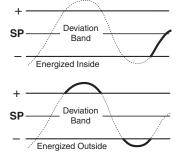

Hysteresis

The setpoint can be programmed to energize the relay in the hysteresis mode, with or without initial start-up inhibit.


Hysteresis (deadband) is the programmable band above and below the setpoint value that determines when and for how long the relay is energized or de-energized. The setpoint can be programmed to energize the relay above or below the setpoint value.


The hysteresis setting can be any value between 0 and 65535 counts. The number of counts selected act both positively and negatively on the setpoint, forming a hysteresis band around the setpoint.

For example, if the setpoint setting is 500 counts and the hysteresis setting is 10 counts, the hysteresis band around the setpoint setting is 20 counts, starting at 490 counts and ending at 510 counts.


Hytseresis with Initial Start Up Inhibit

Deviation with Initial Start Up Inhibit

Display Flashing

Display flashing can be applied to the setpoint when configured in the hysteresis or deviation mode.

The setpoint can be programmed to make the display flash on and off while the setpoint is active, and keep it flashing until the setpoint de-activates.

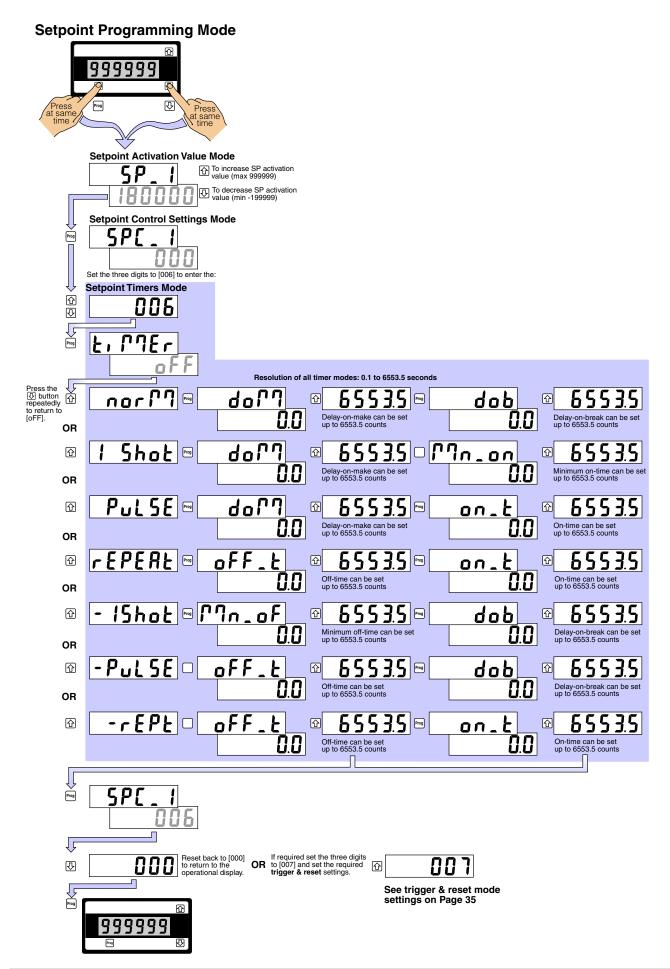
Timer Modes

Π

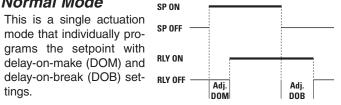
Following the setpoint setup sequence, the next step is to configure **timer mode** settings if required.

The setpoint/relay can be individually programmed to operate in one of the following timer modes, energizing above or below the setpoint value:

- Normal Mode.
- Three Normally OFF, Pulsed ON Modes:
 - Repeat ON mode.
 - Pulse ON mode.
 - 1-Shot ON mode.
- Three Normally ON, Pulsed OFF Modes.
 - Repeat OFF mode.
 - Pulse OFF mode.
 - 1-Shot OFF mode.


All timer modes have timer delay resolution of 0.1 up to 6553.5 seconds. If the setpoint does not require timer mode settings, the mode can be set to OFF.

Deviation


Deviation (passband) is the programmable setting around which the setpoint can be programmed to energize the relay inside or outside the deviation band.

The deviation setting can be any value between 1 and 65535 counts. The number of counts selected act both positively and negatively on the setpoint, forming a deviation band around the setpoint.

For example, if the setpoint setting is 1000 counts and the deviation setting is 35 counts, the deviation band around the setpoint setting is 70 counts starting at 965 counts and ending at 1035 counts.

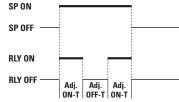
Normal Mode

When the SP deactivates, the DOB delay keeps the relay energized for the programmed time period.

Note:

DOM and DOB settings can be programmed to zero. This allows for instant relay operation.

When the signal activates the setpoint, the DOM prevents the relay from energizing until the programmed DOM delay is complete. If the SP is active for less than the DOM time, the relay does not energize.


See Timer Mode Example 1 – NORMAL Mode Time Control, for examples of the normal mode.

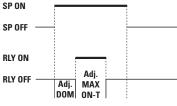
Normally OFF / Pulsed ON Modes

These are time control modes were the relay is normally OFF (de-energized) and pulses ON (energizes) when the setpoint activates.

Repeat ON Mode

The repeat ON mode is a multiple actuation mode with programmable adjustable off-time and on-time settings.

In this mode the on-time setting activates first. When the signal activates the setpoint, the relay energizes immediately and remains energized for the programmed ON-T setting.

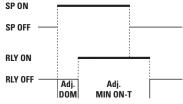

When the ON-T delay is complete, the relay de-energizes and the OFF-T delay starts the cycle again. The ON-T and OFF-T settings continually repeat as long as the SP is active. If the SP deactivates, the relay de-energizes immediately.

See Timer Mode Example 2 - REPEAT ON Mode Time Control, for examples of the repeat on mode.

Pulse ON Mode (Programmable Maximum On-time)

The pulse ON mode is a single actuation mode with programmable DOM and maximum on-time settings.

When the signal activates the setpoint, the DOM prevents the relay from energizing until the programmable DOM setting times out.


The ON-T then energizes the relay for the MAXIMUM programmed on-time period.

For the pulse mode to repeat, the SP must deactivate and then activate again. If the SP deactivates, the maximum on-time setting keeps the relay energized until the ON-T times out.

See Timer Mode Example 3 – PULSE ON Mode Time Control, for examples of the pulse on mode.

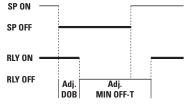
1-Shot ON Mode (Programmable Minimum On-time)

The 1-shot ON mode is a single actuation mode with programmable DOM and minimum on-time settings.

When the signal activates the setpoint, the DOM prevents the relay from energizing until the programmable setting times out.

The MIN-ON then energizes the relay for at least the minimum programmed on-time setting.

If the SP deactivates, the relay remains energized for as long as the programmed MIN-ON period. If the SP remains active for longer than the MIN-ON period, the relay remains energized until the SP deactivates, at which point the relay de-energizes.


See Timer Mode Example 4 - 1-SHOT ON Mode Time Control, for examples of the 1-shot on mode.

Normally ON / Pulsed OFF Modes

These are time control modes were the relay is normally ON (energized) and pulses OFF (de-energizes) when the setpoint deactivates.

1-Shot OFF Mode (Programmable Minimum Off-time)

The 1-shot OFF mode is a single actuation mode with programmable DOB and minimum off-time settings.

When the signal deactivates the setpoint, the relay remains energized until the programmable DOB period times out.

The MIN OFF-T then de-energizes the relay for the minimum programmed off-time period.

If the SP activates during the MIN OFF-T phase, the relay remains de-energized for as long as the programmed MIN OFF-T period and then energizes again.

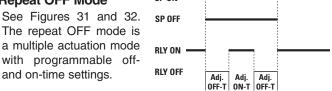
See Timer Mode Example 5 - 1-SHOT OFF Mode Time Control, for examples of the 1-shot off mode.

Pulse OFF Mode (Programmable Maximum Off-time) SP ON

The pulse OFF mode is a single actuation mode with programmable DOB and maximum off-time settings.

DOB setting times out.

SP OFF RLY ON When the signal deacti-**RLY OFF** Adj. Adj vates the setpoint, the DOB MAX relay remains energized until the programmable

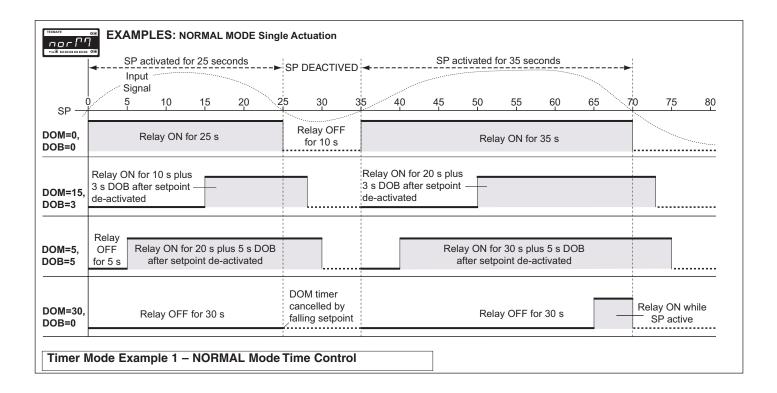

The OFF-T then de-energizes the relay for the MAXIMUM programmed off-time period.

For the pulse mode to repeat, the SP must activate and then deactivate again.

If the SP activates during the OFF-T phase, the relay remains de-energized until the OFF-T times out and then energizes.

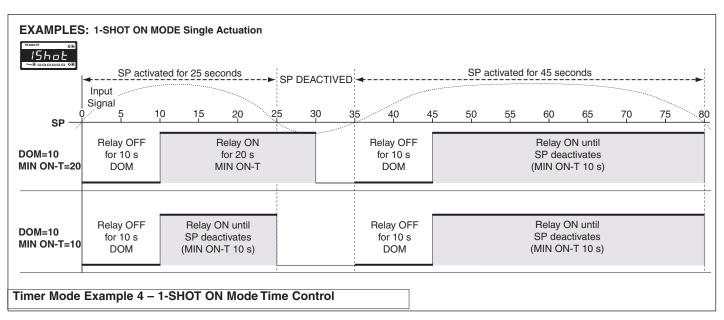
See Timer Mode Example 6 - PULSE OFF Mode Time Control, for examples of the pulse off mode.

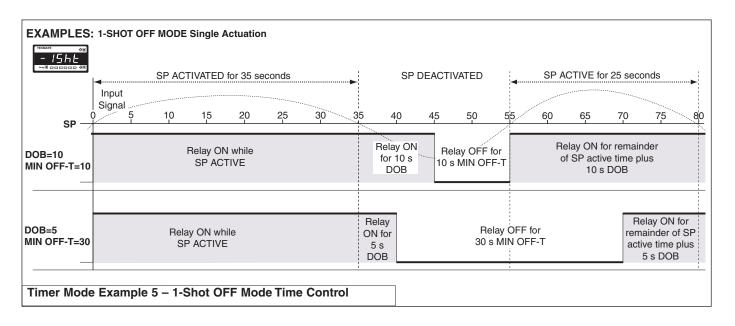
Repeat OFF Mode

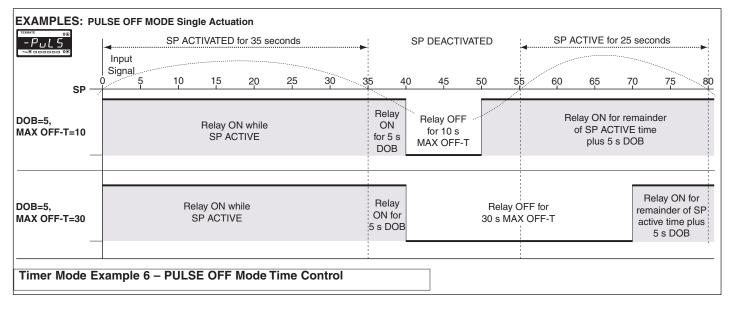


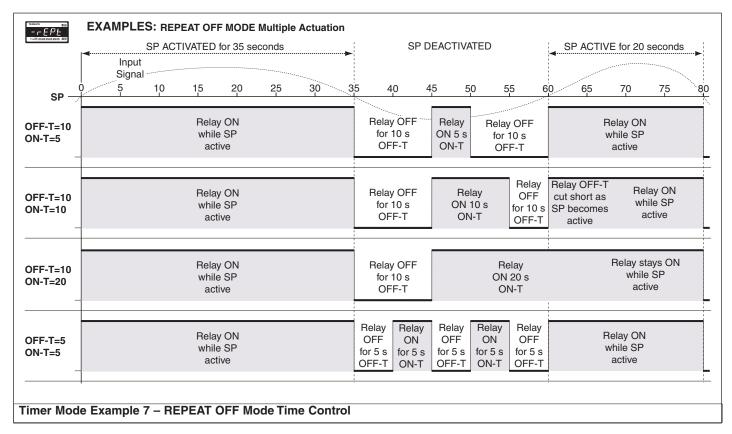
SP UN

In this mode the off-time setting activates first. When the signal deactivates the setpoint, the relay remains de-energized for the programmed OFF-T setting and energizes when the ON-T setting activates.


When the ON-T setting is complete, the relay de-energizes and the OFF-T delay starts the cycle again. The OFF-T and ON-T settings continually repeat as long as the SP is deactivated. If the SP activates, the relay energizes immediately.

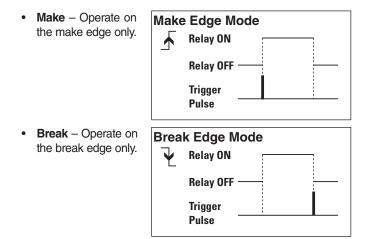

See Timer Mode Example 7 - REPEAT OFF Mode Time Control, for examples of the repeat off mode.




rEPE	r EPE												
Prop. 8	SP activated for 25 seconds							SP activa	ted for 4	5 second	5		
0.5	Input Signal 0,	0 15 2	0 25		5	0 4	5 5	i0 5	5 6	606	5 7	0 7	75
SP	Relay ON for 10 s ON-T	OFF for	y ON 10 s J-T		for	y ON 10 s ∿-T	Relay OFF for 5 s OFF-T	for	y ON 10 s \-T	Relay OFF for 5 s OFF-T	Rela for ON	10 s	Relay OFF for 5 s OFF-T
ON-T=10 OFF-T=10	Relay ON for 10 s ON-T	Relay OFF for 10 s OFF-T	Relay ON 5 s ONLY		Relat for ON	10 s	for	/ OFF 10 s F-T	for	uy ON 10 s N-T	for	y OFF 10 s ∵F-T	Relay ON 5 s ONLY
ON-T=10 OFF-T=20	Relay ON for 10 s ON-T	Relay OFF for 20 s OFF-T			Relay for ON	10 s		for	y OFF 20 s ⁼F-T		for	y ON 10 s N-T	Relay OFF 5 s ONLY
ON-T=5 OFF-T=5	Relay Relay ON OFF for 5 s for 5 s ON-T OFF-T	Relay Relay ON OFF for 5 s for 5 s ON-T OFF-T	Relay ON for 5 s ON-T		Relay ON for 5 s ON-T	Relay OFF for 5 s OFF-T	Relay ON for 5 s ON-T	Relay OFF for 5 s OFF-T	Relay ON for 5 s ON-T	Relay OFF for 5 s OFF-T	Relay ON for 5 s ON-T	Relay OFF for 5 s OFF-T	Relay ON for 5 s ON-T
Timer Mo	Timer Mode Example 2 – REPEAT ON Mode Time Control												

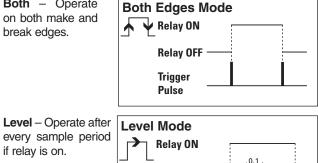
	EXAMPLES: PULSE ON MODE Single Actuation										
		ated for 25 seconds				SP a	ctivated for	or 45 see	conds		
SP	Input Signal 0 5 1	0 15 20 2	25 30 3	5 40	45	50	55	60	65	70	75 80
DOM=5 ON-T=10	OFF for	ay ON 10 s N-T		Relay OFF for 5 s DOM	Relay ON for 10 s DOM						
DOM=10 ON-T=20	Relay OFF for 10 s DOM	Relay ON for 20 s ON-T		Relay C for 10 DOM	s		Relay ON for 20 s ON-T	I			
Timer M	Timer Mode Example 3 – PULSE ON Mode Time Control										

Setpoint Trigger & Reset Mode


While following the setpoint setup sequence, the next step is to configure the trigger & reset mode settings if required.

This mode allows you to configure the following setpoint trigger and specific function reset functions. If not required, the mode can be set to OFF.

- Trigger Settings [triG]. •
- Reset Destination Settings [dESt].
- Reset Mode Settings [ModE].
- Reset Constant Settings [rES_C].


Trigger Settings

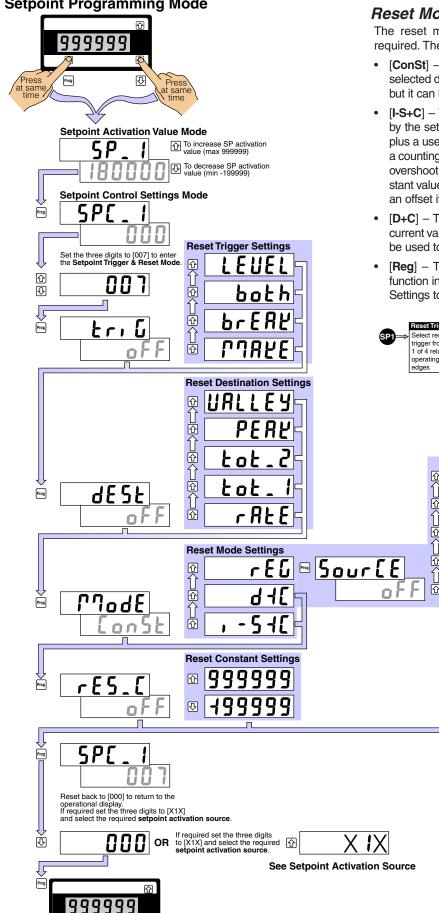
The trigger setting provides the option of selecting which edge of the relay operation the reset function activates on. It can be set to:

Both - Operate on both make and break edges.

if relay is on.

Reset Destination Settings

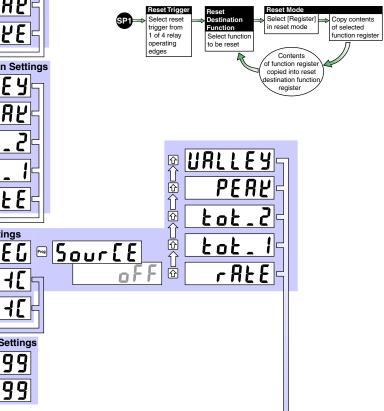
The reset destination setting defines the target function in the meter that is to be modified in some way when the reset trigger conditions for the relay are met.


Relay OFF

Trigger

Pulse

If the destination [dESt] setting is set to [oFF], the reset part of the function is disabled and the reset mode [ModE][ConSt] and reset constant [rES_C] selections are not displayed. The trigger setup sequence is complete and the display jumps straight back to [SPC_1] [007] where you can return to the operational display or carry on with further programming.


Setpoint Programming Mode

Reset Mode Settings

The reset mode setting defines what type of reset effect is required. The following options are available:

- [ConSt] This mode stores a user defined constant into the selected destination function. In most cases this number is zero. but it can be any number.
- [I-S+C] This mode stores the current input value (I), defined by the setpoint activation source, minus the setpoint value (S), plus a user defined constant (C). It would normally be used with a counting or totalizing application where the amount of setpoint overshoot needs to be retained after the reset function. The constant value would normally be zero but could be used to provide an offset if required.
- [D+C] This mode adds the user defined constant (C) to the current value in the selected reset destination function (D). It can be used to increment or decrement a function by any amount.
- [Reg] This mode copies the contents of a user selectable function into the reset destination function (see Reset Constant Settings to select source function).

Reset Constant Settings

This setting defines the constant value to be used in the [ConSt], [I-S+C], [D+C] modes explained in Reset Mode Settings above. It's default value is zero, but can be anywhere between -199999 and 999999. This setting is not available if [rEG] is selected as the reset mode.

Source

If the reset mode is set to [rEG] the source parameter allows you to select the function in the meter to be copied to the selected reset destination function.

Prog

Ð

Setpoint Setup Sequence

When configuring the setpoint it is generally good practice to follow the **setpoint setup sequence**. This ensures that all relevant setpoint control modes have been programmed and that final control settings are saved to memory before exiting the setpoint programming mode.

Setpoint Activation Value

Enter this mode to adjust the setpoint activation value. The default setting is 180000 counts.

Hysteresis & Deviation

Enter this mode if hysteresis or deviation control is required. If not required, this setting should remain **off**.

Setpoint Timers

Enter this mode if timer control is required. If not required, this setting should remain **off**.

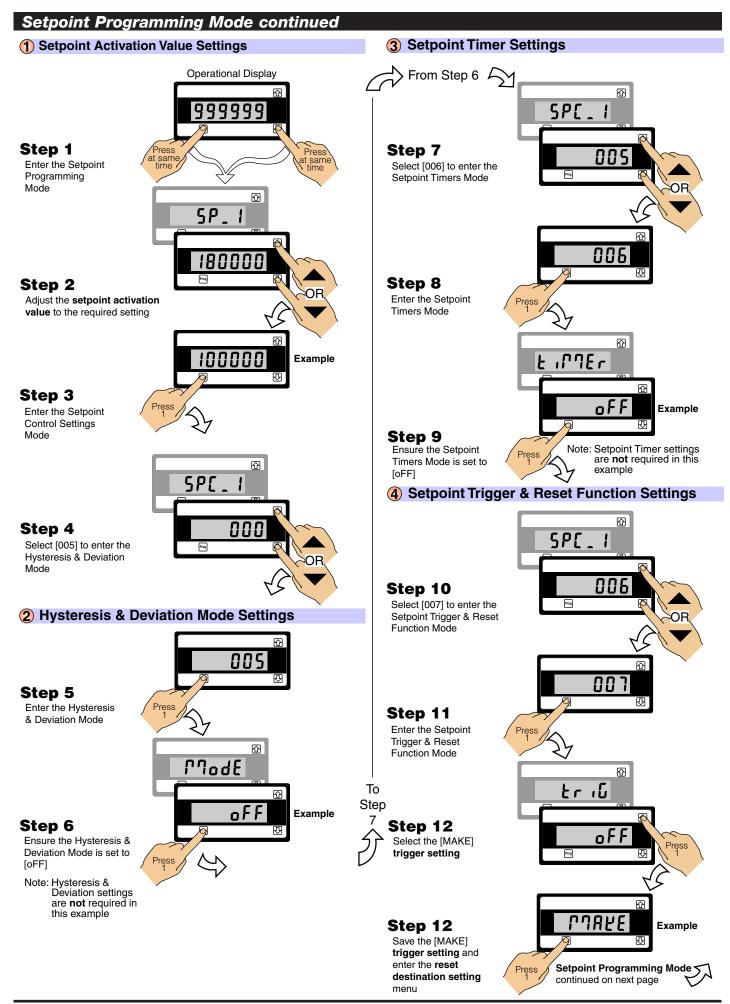
Setpoint Trigger & Reset Functions

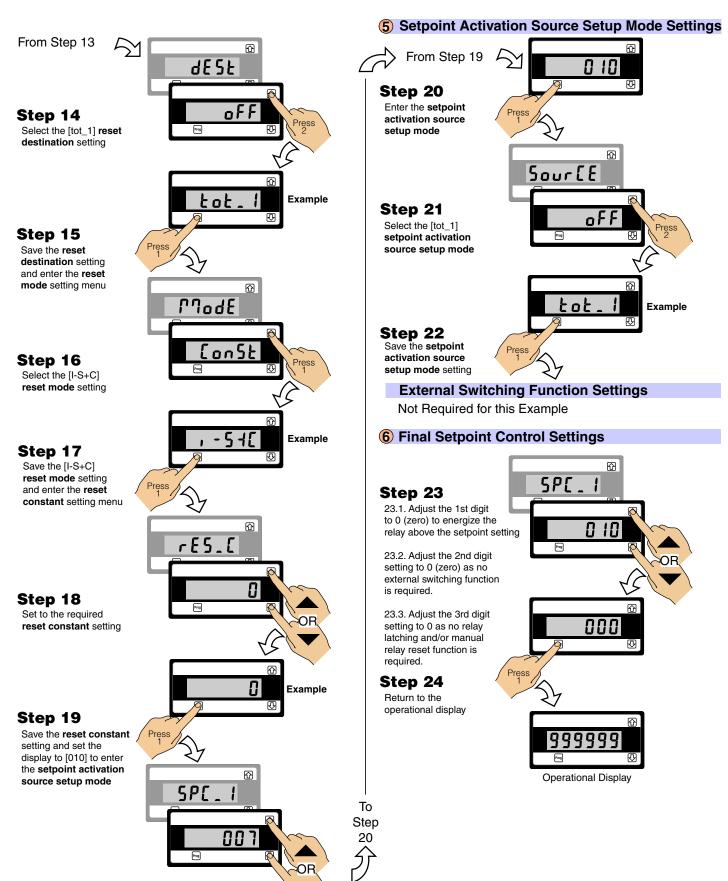
Enter this mode if setpoint trigger & reset control functions are required. If not required, this setting should remain **off**.

Setpoint Activation Source Setup Mode

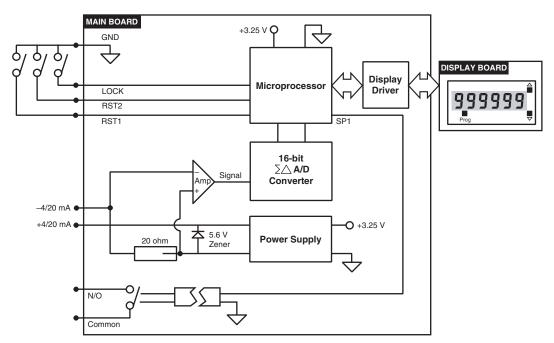
Enter this mode to select the activation source for the setpoint.

External Switching Functions

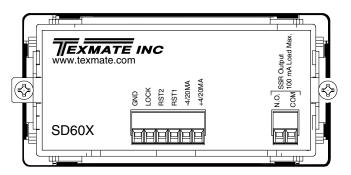



OR, If required, enter the appropriate number in the 2nd digit to select an external switching function as the activation source for the setpoint (see breakdown of setpoint programming mode control settings).

Step Final Setpoint Control Settings


1st Digit: Select a relay energize function.

- **2nd Digit:** If no external switching function is required, select 0 to activate the setpoint source.
- 3rd Digit: Select a latching and/or relay reset mode if required.


Functional Diagram

Connector Pinouts

Rear Panel Pinout Diagram

The meter uses plug-in type screw terminal connectors for all input and output connections.

Right-angled

Pin Descriptions

GND (Ground) Pin

To activate the LOCK, RST1, and RST2 pins from the rear of the meter, the respective pins have to be connected to the GND pin.

LOCK Pin

When connected to the GND (ground) pin, the LOCK pin prevents any programming changes being made to the meter.

If programming is attempted, the programming mode selected can be entered and the modes are displayed but cannot be changed.

RST1 Pin

When connected to the GND pin, the RST1 pin resets totalizer 1 to zero.

RST2 Pin

When connected to the GND pin, the RST2 pin resets totalizer 2 to zero.

-4/20 mA

Input low series connection to 4 to 20 mA DC current loop.

+4/20 mA

Input high series connection to 4 to 20 mA DC current loop.

N.O.

Normally open 210 mA SSR contact (100 mA load maximum).

COM

Common 210 mA SSR contact (100 mA load maximum).

Note:

The RST1, RST2, and LOCK pins can also be used as the activation source for the setpoint. Selecting one of these external switch settings in the 2nd digit overrides any other setpoint activation source setting.

Texmate Produces Thousands of Custom OEM Faceplates

Have Texmate design and build a custom faceplate to suit your next project!

Custom faceplates have a non-recurring artwork charge. A **serial number** is then assigned to each artwork to facilitate re-ordering.

Small run or **one-off** custom faceplates incur an installation charge, and are generally printed on a special plastic film that is then laminated to custom faceplate blanks as required.

The **non-recurring artwork charge** is less if you choose elements from our library.

See Texmate Short Form Catalog with Prices for a library of standard scales and captions.

Large run (250 pieces minimum) custom face plates are production silk screened, issued a part number, and held in stock for free installation as required by customer orders.

OEMs may also order custom **meter labels**, **box labels**, **data sheets** and **instruction manuals**.

Faceplate Ordering	Information
Part Number	Description

List

Custom Faceplates for Meters

Large Run Custom Faceplates for Meters

ART-FL-S/D/CCustom Faceplate, 250 Min Artwork & set-up + Logo\$75
ART-FL-001 Custom Faceplate, 250 Min. (\$1.00 each) - 1 color \$250
ART-FL-002 Custom Faceplate, 250 Min. (\$1.40 each) - 2 color\$350
ART-FL-003 Custom Faceplate, 250 Min. (\$1.80 each) - 3 color\$450
When ordering Large Run Faceplates to be installed, please specify the
custom part number issued for each different artwork. ie: 77-DLXXXXX

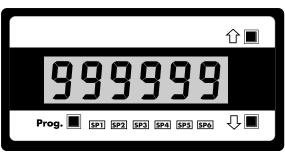
AHEAD	AC Vars	AC Amperes	AC Kilowatts	AIR PRESSURE	AC Milliamperes
ALARM	AC Volts	AC Kilovars	AC Millivolts	AC Kiloamperes	Battery Voltage
BOILER	AC Watts	AC Kilovolts	BPH X 1000	AC Megavars	Backup Voltage
Cycles	BEARING	AIR FLOW	CFH x 1000	AC Megawatts	Displacement
Depth	COOLANT	BBLS/HOUR	DC Amperes	AC Watts/Vars	DC Amps to Ground
HEATER	DC Volts	BFM AMPS	DC Kilovolts	CENTIMETERS	DC Microamperes
Height	DC Watts	BHP x 100	DC Kilowatts	DC Kiloamperes	DC Milliamperes
Hertz	Degrees	BLOWER	DC Millivolts	FD FAN AMPS	GALLONS / MINUTE
Hours	ENGINE	DC Current	FPM X 100	IN. H ₂ O PRESS	GENERATOR AMPS
INCHES	EXHAUST	Dew Point	FPM X 1000	LBS/MINUTE	LBS PER GALLON
Input	Humidity	Degrees C	GPM X 1000	LEVEL INCHES	LOAD LIMIT PERCENT
PORT	METERS	Degrees F	HORSEPOWER	LEVEL GALLONS	MANIFOLD PRESSURE
PUMP	Output	Degrees K	INCHES WC	LEVEL PERCENT	MILL LOAD AMPS
Preset	Percent	Degrees R	INCHES H ₂ O	MILLIMETERS	MOTOR LOAD AMPS
Reset	Program	FPM X 10	KILOWATTS	Percent Current	Percent Horsepower
SHAFT	Pounds	Frequency	LBS X 1000	Percent Load	OXYGEN PERCENT
SPEED	Pulses	FUEL FLOW	MEGAWATTS	PERCENT OPEN	TEMPERATURE YC
Setup	RUDDER	GALLONS	Power Factor	RATE of TURN	TEMPERATURE VF
TABLE	SPINDLE	IN. WATER	Phase Angle	STEAM TEMP \F	Motor Load Percent
Total	SQ ROOT	LEVEL FT.	RPM X 100	TONS / HOUR	LEFT RIGHT
VALVE	Set Point	LBS X 100	STARBOARD	OIL PRESSURE	FRONT REAR
Valley	THRUST	POSITION	TANK LEVEL	WATER LEVEL	FORWARD REVERSE
WATTS	TURBINE	TONS X 10	VAC MM HG	1000 LBS/HOUR	TOP BOTTOM (L418)

Optional Caption Sheets

White or black lettering for do-it-yourself customizing

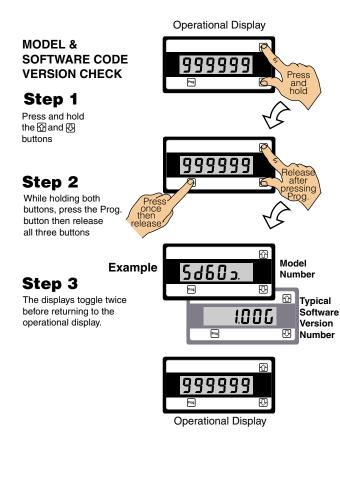
Sample Caption Sheets not to scale

Α	AC	E _b	Btu	bars	CFH	BHP	Low	inch/	CosØ	AMPS	BBL/HR
J	Ah	kJ	bar	cal ₁₅	CFM	IPS	High	Kcal	FEET	GALS	BBL/MIN
K	cd	kV	cal	cm ⁻¹	CFS	IPH	MGD	kg/hr	Hold	INHg	DEG/MIN
ι	dB	kW	cm	cm ²	COS	Kg/h	MId	kVAR	Km³/h	m/min	FT H ₂ O
m	DC	ml	FT ³	cm ³	CPH	KPH	MPH	kW/s	MWH	m/sec	In.H ₂ O
V	FT	NL	lbs	dm³	СРМ	КРМ	MPS	RPM	mWs	Nm³/h	Kg/cm ²
α	HP	Ра	IN ²	H ₂ O	CPS	KPS	N/m²	MPM	mbar	Ohms	KNOTS
β	Hz	PF	kg/	kPa	DCA	kWH	ORP	M³/hr	ml/m³	PSIA	kg/sec
¢	Kg	pН	mA	l/s	FPH	lb/ft	PPH	Upm	mm/s	PSID	Mvars
Ω	kA	sin	mS	l/h	FPM	lb/in	PPM	VAC	Peak	PSIG	mmH₂0
Δ	L³	t/h	mV	l/m	FPS	LPH	PPS	Vars	PORT	PSIR	mmHg
μ	m ³	yd³	Nm	lb/h	GAL	LPM	RPH	VDC	STRB	SCFM	VOLTS
θ	W	μΑ	0Z	MW	GMP	LPS	RPS	w/m ²	TARE	TORR	%LOAD
γ	°C	μ	RH	min	GPH	m³/h	phi	YPM	TONS	U/min	%OPEN
%	°F	μV	1/h	mm	GPM	m³/m	psi	YPS	X100	x10kN	→ ⁴¹⁹
Z	°K	μΩ	μ m	Sm³	GPS	m³/S	X10	μ Ρa	%KW	X1000	← - ²


Custom Faceplate Design Template

Use the templates below to see how your logo looks and fits.

Standard NEMA-4X Water and Dust-proof Membrane Touch-pad Panel


Optional Push-button Panel

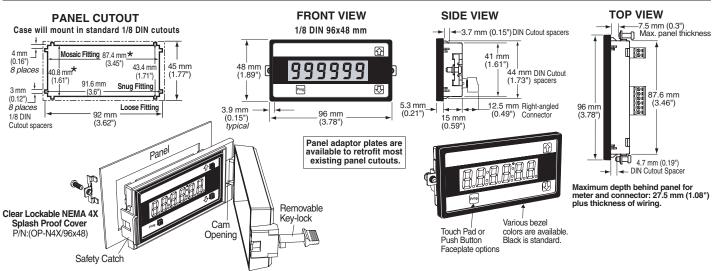
Model and Software Code Version Check

The meter model and software code version number can be checked at any time while in the operational display using the following procedure.

Notes

Model No:	
Software Version No:	

Programming Tip


The *Model and Software Code Version* checking procedure can be performed at any time without interfering with other configuration settings.

Main Programming Mode

Calibration Mode		Setpoint Activation Value	5P_1
Tick frequency settingFrequency:50 Hz60 Hz		Setting =	Counts
Tick response setting Response: Linear Squ	uare Root		
Zero Setting =	Counts	Setpoint Activation Source Setup	
Span Setting =	- Counts	Source: Rate	
	-	Total 1	
Totalizer Mode		Total 2	
	[ALFof	Peak	
Totalizer 1: Input = To	otalizer 2: Input =	Valley	
After =	After =	· [_]	
Total =	Total =	Hysteresis & Deviation Mode	XXS
Cutoff =	Cutoff =	Hysteresis Setting =	
Rollover =	 Rollover =	Deviation Setting =	
Signal Filtering Mode	FiltEr	Timers Mode	
Averaging Samples =		Normal: DOM = D	ООВ =
Averaging Window =		1-Shot: DOM = N	lin-on =
Display Source Mode	d, 5P_ 1	Pulse: DOM = C)n-T =
Tick selected source Source: Rate		Repeat: Off-T = C)n-T =
Total 1		-1-Shot: Min-on = [00B =
Total 2			
Peak		Pulse: Off-T = D	00B =
Valley		-Repeat: Off-T = C)n-T =
Display Format Mode	dSP_FŁ	Setpoint Trigger Mode	
Input: Rate Last Digit De	escriptor =	Reset Trigger =	
Decimal Poi	nt Position 9999999	Reset Destination =	
Input: Total 1 Last Digit De	escriptor =	Reset Mode =	Source =
Decimal Poi	nt Position 9999999	Final Setpoint Control Settings	
Input: Total 2 Last Digit De	escriptor =	1st Digit 2nd Digit	3rd Digit
Decimal Poi	nt Position 9999999		

Setpoint Programming Mode

Case Dimensions

Ordering Information

Standard Optio	ns for this Model Numb	er
Part Number	Description	List
► BASIC MODEL NU Includes plug-in type sc	IMBER rew terminals and standard LCD disp	olay.
SD-60XI DPM, 4 to	o 20 mA DC Loop Powered Touch-pad Fac	eplate \$199
Special Options	s and Accessories	
	Scaling within the standard 4 to 20 mA range	
► ACCESSORIES (Sp	ecify Serial # for Custom Artwork I	nstallation)
	rel for 96x48mm Case	•
	ew Terminal Conn., 2 Pin Plug	
	kable Water-proof cover, Nema 4X, IP65	
	ton faceplate option for SD-50X	
	tout Reinforcer with O-Ring Seal	
OP-PMA96X48 Panel Cut	tout Reinforcer with 2 Brackets & Clips	\$12

	NRC for Artwork & set-up Custom Faceplate and Custom Logo
	Produce & Install Custom Faceplate per meter - 2 color no-min\$20
ART-FS-003	Produce & Install Custom Faceplate per meter - 3 color no-min\$30
ART-FL-001	Custom Faceplate, 250 piece Min. (\$1.00 each) - 1 color\$250
ART-FL-002	Custom Faceplate, 250 piece Min. (\$1.40 each) - 2 color\$350
ART-FL-003	Custom Faceplate, 250 piece Min. (\$1.80 each) - 3 color\$450

Many other options and accessories are available. See full price list for more details. All Prices subject to change without notice.

WARRANTY

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of the products which shall, within the applicable period after shipment, be returned to Texmate's facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to misuse, negligence, or accident. In no case shall Texmate's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has been either repaired or replaced by Texmate.

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY WHETHER OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR OTHERWISE is made beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate. Users shall determine the suitability of the product for the intended application before using, and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In o event shall Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.

Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time.

For product details visit www.texmate.com Local Distributor Address

995 Park Center Drive • Vista, CA 92081-8397 Tel: 1-760-598-9899 • USA 1-800-839-6283 • That's 1-800-TEXMATE Fax: 1-760-598-9828 • Email: sales@texmate.com • Web: www.texmate.com Texmate has facilities in Japan, New Zealand, Taiwan, and Thailand. We also have authorized distributors throughout the USA and in 28 other countries.

Copyright © 2004 Texmate Inc. All Rights Reserved.