

TIGER FAMILY

Programmable Micro PLC 5 Digit, 3 Display 0.31" LEDs DIN Rail Mount

Optional HMI Touch Screen Display

General Features

- The Tiger 320 Operating System supports an easy to use PC based Configuration Utility Program (which can be downloaded FREE from the Texmate website) and programming from front panel buttons.
- The Macro enabled Version supports custom macro programs that can be easily produced with the Tiger Macro Development System. The Development System enables programs to be written in BASIC, which can utilize any combination of the hundreds of functions and thousands of registers embedded in the Tiger Operating System.
- 3 displays with red, green, or superbright red 7 -segment, 0.31 " high LEDs with full support for seven segment alphanumeric text.
- Brightness control of LED display from front panel buttons.
- Modular construction with more than 120 interchangeable input signal conditioners and more than 25 interchangeable I/O modules.
- Up to 4 input channels with cross channel math for multi-channel processing.
- For applications where sensor excitation is required, modules are provided with $5 \mathrm{~V}, 10 \mathrm{~V}$ or 24 V DC voltage outputs.
- On demand tare, calibration and compensation can be initiated by the front panel program button.
- Autozero maintenance for super stable zero reading is provided for use in weighing applications.
- Programmable input averaging and smart digital filtering for quick response to input signal changes.
- Display text editing. Customize display text for OEM applications.
- Scrolling display text messaging on T meters with macros.
- Auto-sensing high voltage or optional low voltage AC / DC power supply.
- Serial output options include RS-232, RS-485, ModBus, Ethernet, or direct meter-to-meter communications.
- Single or dual 16-bit Isolated Analog Outputs. Programmable $0 \sim 4$ to 20 mA or 0 to 10 V for retransmission, $4-20 \mathrm{~mA}$ loops to drive valve actuators, remote controllers \& displays, multiloop feedback and PID output. Scalable from 1 count to full scale.
- Dual independent totalizers to integrate input signals.
- 6 super smart, independently programmable setpoints with 8 selectable functions, including latching, deviation, hysteresis, register resetting, tracking and dual PID. Plus 7 programmable timer modes on all 6 setpoints.
- Setpoint tracking, setpoint latching and manual relay reset.
- Setpoints activated from any input, any register in the meter or from any digital input.
- Plug-in I/O modules include electromechanical or solid state relays, logic outputs or open collector outputs. 6 inputs \& 16 outputs of opto-isolated I/O can be connected to an external DIN Rail terminal block module.
- Internal program safety lockout switch to prevent tampering.
- Peak \& valley (max \& min) with front panel recall and reset.
- Real time clock with 15 year Lithium battery backup.
- Data logging within the meter (up to 4000 samples with date/ time stamp).
- Optional NEMA-4 front cover.
- UL Listed

Input Module Compatibility

TIGER FAMILY: More than 140 different Plugin I-Series Input Signal Conditioners are approved for the Tiger Family of meters.

See I-Series Input Signal Conditioning Modules
 Guide (Z87) for an up-to-date list.

Table of Contents

General Features 1
Specifications. 2-3
Block Diagram of Tiger 320 Structure . . . 4
Controls \& Indicators. 6-7
Front Panel Configuration \& Setup 8
Front Panel Programming Codes . . . 9-10

Initial Setup Procedures 11-12
Display Brightness 12
Calibration Modes 13-16
Programming Procedures. 17-29
Setpoint Programming Mode 30-35
Registers . 36
Functional Diagram 37
Connector Pinouts. 37
Relay and Logic I/O Modules. 38
Installation Guidelines \& Case Dimensions
39
Ordering Information. 40-42

Digital Display: 3 displays, 7 -segment, 0.31 " (8 mm) LEDs.

Display Color: Red (std). Green or Super-Bright Red (optional).

Digital Display Range: -19999 to 99999
Update Rate: 3 to 10 times per second
Display Dimming: 8 brightness levels. Front Panel selectable

Scrolling Display Text Messaging: Full alphanumeric, 7 -segment text characters supported on T Version with macros.

Polarity: Assumed positive. Displays - negative
Decimal Point: Front panel, user selectable to five positions.

Annunciators: 6 red LEDs on front panel; one per setpoint.

Overrange Indication: Underrange Indication:

Front Panel Controls: PROGRAM, UP and DOWN.

Tiger Operating System

Processor: 32 bit with floating point maths (18.4 MHz).
Flash Memory: 64k, 4 k for use by custom macros.
RAM: 1.25k and FeRAM 4k.
EEPROM: E Version 4 k standard, T Version 32 k standard. Memory upgrades available to 32k for LIN Tables and 1MB for Data Logging and custom macros.

Registers: 6144 registers comprised of 8,16 or 32 bit signed, unsigned or floating point registers, implemented in a combination of RAM, FeRAM, Flash and EEPROM.

Internal communication BUS: 32 bit $\mathrm{I}^{2} \mathrm{C}$ BUS

Real Time Clock (option):

Year:Month:Date:Hour:Minute:Second with 15 yr Lithium battery backup, when OR91 Data Acquisition Module with two SSR Ouputs is orderd.

Configuration: Supports Front Panel Programming Codes and a PC-based Configuration Utility Program,
which may be downloaded free from our website. T Version also supports custom macros.

Development System for Custom Macros

The Tiger 320 Macro Development System, which may be downloaded free from our website, can be used to create powerful macro software that allows Tiger 320 T Versions to be easily customized to suit any proprietary OEM application.

Installed
 Includes

Counter Functions: Two built-in counters. UP counters, DOWN counters, UP/DOWN counters and high speed quadrature counters.
Data Logging: Logging with a date/time stamp, initiated at timed intervals, by activation of a setpoint, or manually. Data stored in a removable 4 to 128M Flash Card Memory Module. Endless loop recording is supported.
Input Compensation: Provides compensation to the primary input channel (CH1) via channels 2,3 or 4.
Linearization: 4 selectable 32 point or one 125 point flexible linearization tables are provided.
Logic I/O: 28 Macro programmable I/O ports supported.
Manual Loader: Front panel adjustable, 4 to 20 mA or 0 to 10 V isolated analog output.
Math Functions: Cross channel math functions to calculate the sum, difference, ratio or the product of two inputs.
On Demand Functions: Tare, compensation and calibration.
Peak and Valley: The meter can retain peak and valley ($\mathrm{min} / \mathrm{max}$) information and recall this on the front panel.
Remote Setpoint Input: Remote setpoint input via channel 2.
Serial Output Protocols: Selectable communication modes include ASCII, Modbus (RTU), Master Mode (for meter to meter communication) and an Epson compatible printer driver. An Ethernet optional output carrier board is also supported.
Setpoint Functions: Six super smart setpoints with fully configurable hysteresis, on and off delays, one shot, pulse and repeat timers, latching, dual PID, setpoint tracking, resetting of registers, initiating of logging and printing.
Signal Conditioning Functions: Averaging, smart filter, rounding, square root, auto zero maintenance.
Timer: Timer functions supported in either time-up, time-down, or real-time clock modes.
Totalizer: Two totalizers for running total and batch totals of a process signal that can be accumulated over time.

Inputs

Inputs Available: More than 120 single, dual, triple and quad input signal conditioners available covering all types of analog, digital and mixed input signals.

Accuracy: Tiger 320 PMCs enable the user to establish any degree of system accuracy required. Built-in compensation and linearization functions enable system accuracies of the order of $\pm 0.0001 \%$ of reading for analog inputs. Stop -Start time resolution from $\pm 1 \mathrm{sec}$ to $\pm 0.7 \mathrm{nsec}$. Digital input and pulse counts ± 1 count.

A/D Convertors: A Dual Slope, bipolar 17 bit A/D is provided as standard on the main board. SMART modules can have 24 bit or 16 bit Delta-Sigma A/D convertors that utilize the internal ${ }^{2} \mathrm{C}$ BUS.

Temperature Coefficient: Typically $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Compensation can be utilized to achieve system temperature coefficients of 1 ppm .

Warm Up Time: Up to 10 minutes, depending on input module.

Conversion Rate: Typically 10 samples per second. However, SMART input modules are available that can convert at $60,240,480$ or 960 samples per second.

Control Output Rate: Can be selected for 100msec or 10 msec . Some SMART modules have SSR outputs that react within 1.2 msec .

Excitation Voltage: Depends on input module selected. Typically, $5 \mathrm{~V}, 10 \mathrm{~V}$ or 24 VDC is provided.

Outputs

Two Optional Plug-in Carrier Boards: Provide three different serial outputs or no serial output, support single or dual analog outputs, and accept any one of seven different plug-in I/O modules.

1. Standard Carrier Board: Is available without a serial output, or with either an isolated RS-232 or an isolated RS-485 (RJ-6 socket).
2. Ethernet Carrier Board: 10/100Base-T Ethernet (RJ45 socket).

Two Isolated Analog Output Options: Mounted on any carrier board.

1. Single Analog Output: Fully scalable from 4 to 20 mA or 0 to 20 mA (or reverse) and selectable for 0 to 10VDC (or reverse).
2. Dual Analog Output: Fully scalable from 0 to 10VDC (or reverse).

Inputs

Analog Output Specifications: Accuracy: 0.02\% FS. Resolution: 16-bit Delta-Sigma D/A provides $0.4 \mu \mathrm{~A}$ on current scaling, $250 \mu \mathrm{~V}$ on voltage scaling. Compliance: 500Ω maximum for current output. 500Ω minimum for voltage output. Update Rate: Typical 7 per second. Step Response: Typical 6 msec to a display change. Scalable: From 1 count to full scale.

Seven I/O Modules: Plug into any carrier board from rear.

1. Four Relay Module: Available in six combinations from one relay up to a total of two 9/10A Form C Relays* and two 4/5A Form A Relays**.
2. Four Relay Module: Available with one to four 5 A Form A Relays**.
3. Six Relay Module: Available with five or six 4A Form A Relays**.
*Form C Relay Specifications: 9/10A 240VAC~1/2 HP, 8A 24VDC. Isolation 3000V. UL and CSA listed.
**Form A Relay Specifications: 4/5A 240VAC, 4A
24VDC. Isolation 3000V. UL and CSA listed.
4. Four Solid State Relay (SSR) Module: Available with one to four independent (210mA DC only) SSRs (300V max).
5. Six Output 5VDC / TTL or Open Collector: Available with 0 to $5 \mathrm{VDC}(50 \mathrm{~mA})$ or 0 to $\mathrm{V}+(5 \mathrm{VDC}$ max, 50 mA$)$.
6. Opto Isolated I/O Module: Available in either 6 Outputs \& 6 Inputs, or 16 Outputs and 6 Inputs. For connection to an external breakout box.
7. Flash Card Memory Module: Available with 8 or 16 MB memory.

Power Supplies

Auto sensing AC/DC (DC to 400 Hz) hi volts std, low volts optional.
PS1 (standard): $95-300 \mathrm{VDC}$ or $85-265 \mathrm{VAC}, 50-400 \mathrm{~Hz}$, 2W nominal.
PS2 (optional): $10-72 \mathrm{VDC}$ or $14-48 \mathrm{VAC}, 50-400 \mathrm{~Hz}$, 2W nominal.

Environmental (See Rear page for IP-65 \& NEMA-4 options)

Operating Temperature: 0 to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
Storage Temperature: $-20{ }^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to 158 ${ }^{\circ} \mathrm{F}$).
Relative Humidity: 95% (non-condensing) at $40{ }^{\circ} \mathrm{C}$ ($104{ }^{\circ} \mathrm{F}$).

Mechanical (See Rear page for more details)
Case Dimensions: 1/8 DIN, 96x48mm (3.78" x 1.89") Case Material: 94V-0 UL rated self-extinguishing polycarbonate.
Weight: $11.5 \mathrm{oz}(0.79 \mathrm{lbs})$, $14 \mathrm{oz}(0.96 \mathrm{lbs})$ when packed.

Certifications and Listings

CE: As per EN-61000-3/4/6 and EN-61010-1.
UL: E469078

THIS PAGE INTENTIONALLY LEFT BLANK

Program Button

While programming, pressing the button saves the current programming settings and moves to the next programming step.
You can move through the programming codes using the program button. The codes you pass are not affected, unless you stop and make changes using the \uparrow or buttons.
Pressing the P and \rightarrow button at the same time initiates the main programming mode. To save a new configuration setting and return to the operational display, press the \mathbf{P} button once and then press the \boldsymbol{P} and button at the same time.
Pressing the \square and \square button at the same time initiates the setpoint programming mode. To save a new configuration setting and return to the operational display, press the button once and then press the P and button at the same time.
See Display with Faceplate and Bezel diagram.

Up Button

When setting a displayed parameter during programming, press the button to increase the value of the displayed parameter.
When in the operational display, pressing the button initiates a viewing mode that allows you to view the readings on channels 1 and 3, setpoints 1, 3, and 5, peak, and total 1. Once into the viewing routine, pressing the $\boldsymbol{\top}$ button moves through each displayed parameter.
See Display with Faceplate and Bezel diagram.

Down Button

When setting a displayed parameter during programming, press the \lfloor button to decrease the value of the displayed parameter.
When in the operational display, pressing the \square button initiates a viewing mode that allows you to view the readings on channels 2 and 4, setpoints 2, 4, and 6, valley, and total 2. Once into the viewing routine, pressing the \square button moves through each displayed parameter.
See Display with Faceplate and Bezel diagram.

Annunciator LEDs

The annunciator LEDs can be programmed to indicate the alarm status.
Setpoint 1 can be configured to indicate the rising signal trend. Setpoint 2 can be configured to indicate the falling signal trend. They are labeled from left to right: SP1, SP2, SP3, SP4, SP5, SP6.
See Display with Faceplate and Bezel diagram.

Seven Segment LED Displays

The six, seven segment LED displays are used to display the meter input signal readings.
They also display the programming codes and settings during programming. The display is available in red, green, or super bright red LEDs.

LED Displays

The meter has three 5 -digit, 7 -segment, 8 mm standard red, or optional green or bright red LED displays. The top display is the primary display and displays the primary input signal on Channel 1. It is also used to display all meter configuration programming codes. This includes programming the second and third displays.
The second and third displays can each be programmed to display an independent input signal, or a combination of signals processed by the meter, such as rate and total, peak and valley, etc.

Display Text Editing with 7 Segment Alphanumeric Display Characters

Display text, such as setpoints, can be easily edited to suit your application, by connecting the meter to a PC running the free downloadable Configuration Utility program.

For Example:

 TANK LOW

Scrolling Display Text Messaging

Scrolling display text messaging can be configured to run but requires a simple compiler generated macro.

Display Text Characters

The following text characters are used with the 7-segment display.

7-SEGMENT DISPLAY CHARACTERS

Program Lockout Switch

When the PROGRAM LOCKOUT switch is set to position 2, all programmable meter functions can be changed.
When set to the ON position, the PROGRAM LOCKOUT switch prevents any programming changes being made to the meter. If programming is attempted, the meter displays [LOC]. The ON position allows programming parameters to be viewed but not changed.
See Display PCB without Faceplate and Bezel diagram.

Setpoint Lockout Switch

When the SETPOINT LOCKOUT switch is set to position 1, the setpoints can be programmed. Once the setpoint values have been entered and the SETPOINT LOCKOUT switch set to the ON position, the setpoints can be viewed but not changed.
See Display PCB without Faceplate and Bezel diagram.

Error Message [Err]

Error messages usually occur during calibration procedures. The three most likely causes of an error message are:

1) The full scale and zero signals were too similar.
Note, the high input (full scale) signal must be at least 1000 counts greater than the low input (zero) signal (positive and negative values are allowed).
2) The scaling requirement exceeded the capability of the meter (-19999 to +99999).
3) No input signal present, or
 incorrect connections.

Bottom Connectors Panel

Lock Pin

By configuring Code 9 to [XXO], connecting the LOCK pin (pin 8 on the main PCB) to the COMMON pin (pin 11 on the main PCB), locks out the main and setpoint programming modes. All meter programming codes and setpoints can be viewed but not changed.

The LOCK pin can also be configured in Code 9 to carry out the following functions (see Meter Programming Codes on Page 9):

- Reset channel 1 [XX1].
- Reset channel 2 [XX2].
- Reset channel 3 [XX3].
- Reset channel 4 [XX4].
- Reset tare [XX5].
- Reset total 1 [XX6].
- Unlatch (de-energize) all setpoints [XX7].

Hold Pin

Configure Code 9 to [XOX]. When the HOLD pin (pin 9) is connected to the COMMON pin (11) the displayed reading is frozen. However, A/D conversions and all control functions continue and as soon as pin 9 is disconnected from pin 11 by the switch, the updated reading is instantly displayed.
The HOLD pin can also be configured in Code 9 to carry out the following functions (see Meter Programming Codes on Page 9):

- Reset channel 1 [X1X].
- Reset total 1 and total 2 [X2X].
- Reset total 2 [X3X].
- Reset peak and valley [X4X].
- Reset tare [X5X].
- Set tare [X6X].
- Unlatch (de-energize) all setpoints [X7X].

Test Pin

Configure Code 9 to $[0 X X]$. When the TEST pin (pin 10) is connected briefly to the COMMON pin (pin 11) all segments of the display and setpoint annunciators light up. Six eights and six decimal points (8.8.8.8.8.8.) are displayed for a short period. The microprocessor is also reset during this time, losing all RAM settings such as peak and valley, and any digital input pin settings set up in Code 9.
The TEST pin can also be configured in Code 9 to carry out the following (see Meter Programming Codes on Page 9):

- Reset counter channel 1 and total 2 at power-up [1XX].
- Reset counters, $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4$,- total 1, and total 2 at power-up [2XX].
- Reset total 1 and total 2 at power-up [3XX].

Capture Pin

When the CAPTURE pin (pin 12) is connected to the COMMON pin (pin 11), the CAPTURE pin can be programmed for setpoint/ relay activation or macro control applications in the setpoint control settings mode of the setpoint programming mode $\left[S P C _X\right][X 2 X]$.

Common Pin

To activate the LOCK, HOLD, TEST and CAPTURE pins from the rear of the meter, the respective pins have to be connected to the COMMON pin (pin 11).

The main programming mode can be entered, but only the brightness setting adjusted. After adjusting the brightness setting, pressing the P button displays [LoCK].

The meter uses a set of intuitive software codes to allow maximum user flexibility while maintaining an easy programming process. To configure the meter's programming codes, the meter uses the three right-hand side display digits. These are known as the 1st, 2nd, and 3rd digits and can be seen in the diagram opposite. To explain software programming procedures, diagrams are used to visually describe the programming
 steps. The following conventions are used throughout the range of Tiger 320 Series document diagrams to represent the buttons and indicators on the meter, and the actions involved in programming the meter:

Symbol

Explanation

The top display showing 99999 represents the OPERATIONAL DISPLAY. After the meter has been powered up, the display settles and indicates the calibrated input signal. This is known as the operational mode and is generally referred to as the operational display throughout the documentation.

All programming modes are entered from this level.

This symbol represents the PROGRAM button. In a procedure, pressing the program button is always indicated by a left hand. A number indicates how many times it must be pressed and released, or for how long it must be pressed before releasing.

This symbol represents the UP button.
Shown in a diagram, pressing the UP button is always indicated by a right hand.
This symbol represents the DOWN button.
Shown in a diagram, pressing the DOWN button is always indicated by a right hand.
Where two right hands are shown on the same diagram with the word OR between them, this indicates that both the $\boldsymbol{\square}$ and \ddagger buttons can be used to adjust the dis- play: UP for increase, DOWN for decrease.
[Span] Text or numbers shown between square brackets in a description or procedure indicate the programming code name of the function or the value displayed on the meter display.

Programming procedures are graphic based with little descriptive text.
Each procedure shows a number of meter panel displays running in procedural steps from the top to the bottom of the page.
If need be, the procedure may run into two columns with the left column running down the page and continuing at the top of the right-hand column. Each action performed by the user is shown as a numbered step.
Each procedural step shows the meter display as it looks before an action is performed. The hand or hands in the procedural step indicate the action to be performed and also how many times, or for how long, the button is to be pressed.
For example, the diagram below shows the meter in the operational display. With a left hand pressing the P button and a right hand pressing the Ψ button, the user is entering the main programming mode. This is indicated by the next diagram displaying [bri] and [5]. This is the display brightness mode and is the first sub-menu of the main programming mode.

Where a left and right hand are shown on separate buttons on the same diagram, this indicates that the buttons must be pressed at the same time.
The only exception to this rule is when carrying out the Model and Software Code Version Check.

When two displays are shown together as black on grey, this indicates that the display is toggling (flashing) between the name of the function and the value or configuration setting.
Where a number is not definable, the default setting [000] is shown.

If an X appears in the description of a 3 -digit programming code or in a configuration procedure, this means that any number displayed in that digit is not relevant to the function being explained, or more than one choice can be made.

The meter's programming codes are divided into two modes: the main programming mode, and the setpoint programming mode (See Diagram below). Each mode is accessible from the operational display.

Programming Tip

The easiest and fastest way to configure the Tiger 320 is to use a PC with the free downloadable configuration utility program.

Setpoint Programming Mode

The setpoint programming mode provides access to program all setpoint and relay functions.

To enter or exit the Setpoint Programming Mode, press \boldsymbol{P} and \square at the same time
To enter or exit the Main Programming Mode, press \boldsymbol{P} and $\boldsymbol{\Delta}$ at the same time
Main Programming Mode

Setpoint Activation Values Mode

Programming Tip

Enter these menus to adjust SP activation values

Save SP Settings \& Exit
To save a new setpoint
configuration setting and
return to the operation-
al display at any point,
press the Pbutton once.
Then press the P and
button at the same
time to exit.

Enter these menus to
configure SP control values

While in the operational display, pressing the $\boldsymbol{\square}$ button allows you to view but not change the following parameters:

- Channel 1.
- Channel 3.
- Setpoint 1.
- Setpoint 3.
- Setpoint 5.
- Peak (of CH1).
- Total 1 (total of CH 1).

While in the operational display, pressing the \ddagger button allows you to view but not change the following parameters:

- Channel 2.
- Channel 4.
- Setpoint 2.
- Setpoint 4.
- Setpoint 6.
- Valley (of CH1).
- Total 2 (total of CH 2).

On Demand Modes

The meter can be programmed to activate the following functions on demand by pressing the \square button for 4 seconds:

- Tare.
- Single-point calibration.
- Two-point calibration.
- Primary input compensation.
- Manual loader (manual offset).
- Print.

The on demand function is selected in the calibration mode.

For a full breakdown of all programming codes, see the Tiger 320 Series Programming Code Sheet (NZ101).

Before configuring the meter, carry out the following meter configuration checks:

- Model and software code version check.
- Code blanking and macro check.

After powering-up the meter, check the model and software code version number and note this in your user manual.

Model and Software Code Version Check

The meter model and software code version number can be checked at any time while in the operational display using the following procedure.

Model No:
Software Version No:
Customer ID:
Macro ID:

Programming Tip

The Model and Software Code Version checking procedure can be performed at any time without interfering with other configuration settings.

Code Blanking and Macro Check

Tiger 320 Series meters have the ability to hide (blank out) all or some programming codes, making them tamper-proof. This can only be done using the Meter Configuration program.
With code blanking turned ON, all main and setpoint codes that have been blanked out during factory programming are hidden, preventing them from being reprogrammed. Any codes that have not been blanked out are still visible and can be reprogrammed.
Turning code blanking OFF means all meter programming codes are visible when you enter the programming modes and can be reprogrammed.
A macro is a set of commands that run automatically when the meter is powered up. We have a growing library of macros to suit a wide range of standard customer applications.
Macros can be installed in the meter at the factory during initial programming or by the customer at some later date. Macros are written and compiled using the BASIC Compiler program, and loaded into the meter using either the BASIC Compiler program or the Meter Configuration program.
Turning the macro OFF means that the meter will not perform the automatic commands pre-programmed to run with the macro.
Unless requested to blank out all or some programming codes and/or run a macro, we will program the meter in the code blanking OFF and macro OFF (default) setting.
To turn the code blanking and macro settings from ON to OFF:

START HERE

CODE BLANKING \& MACRO CHECK PROCEDURE

Step 1

Press and hold the 相 and buttons

continued from Step 3

Step 4

Press the button to switch code blanking OFF

NOTE: Unless otherwise requested, the factory default setting is OFF

Step 5

Press the Prog. button to save the setting

Step 6

Press the button to switch the macro OFF
NOTE: Unless otherwise requested, the factory default setting is oFF

Step 7

Press the Prog. button to save the setting

Programming Tip

Code Blanking and Macro ON/OFF settings revert to the meter's original configuration settings when the meter is powered off and on.

Display Configuration

Once you have read the User manual and related supplements, and installed and powered-up the meter, configure the display to suit its designated application.

Display Brightness Mode

The display brightness mode is accessed when entering the main programming mode. It allows you to adjust the brightness of the display LEDs and setpoint annunciators without interfering with other configuration settings. It is always available, even with the PROGRAM LOCK switch set to ON, or the external LOCK pin connected to the COMMON pin, locking out the programming modes.
The display brightness can be set between 0 and 7 , with 0 being dull and 7 being bright. 5 is the default setting.

Example Procedure:

Configure the display brightness setting to 7 (bright).

Programming Tip

The Display Brightness setting procedure can be performed at any time without interfering with other configuration settings by entering the main programming mode.

The Tiger 320 Series meter has an extremely powerful set of input and output calibration modes. See diagram below.

ON DEMAND Functions

In this mode the meter can be programmed to activate one of the following on demand functions by pressing the \mathbf{P} button while in the operational display:

- On Demand TARE.
- On Demand Single-point Calibration (requires single input source).
- On Demand Two-point Calibration (requires dual input source).
- On Demand Primary Input Compensation Mode.
- On Demand Manual Loader Mode.

Calibration Modes

The following calibration modes are available:

- Manual Calibration (requires NO input source).
- Two-point Calibration (requires dual input source).

This is the calibration mode generally used to calibrate the meter for most applications. An example procedure has been included.

- Calibrate Thermocouple (requires K type thermocouple input source).
- Calibrate RTD (requires RTD 385 input source).
- Calibrate Smart Input Module (not available on all input modules).
- Calibrate Analog Output (requires multimeter connected to pins 16 and 17).

Related Calibration Functions

The following functions are also configured in the calibration mode. See Advanced Calibration and On Demand Mode Supplement (NZ203) for further calibration details.

Serial Communications Properties

Selecting [CAL][20X] enters the Serial Communications Properties Mode.
This mode allows you to configure the serial communications output module baud rate, parity, time delay, and address settings.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.
Also see the Serial Communications Module Supplement (NZ202) for further details on the serial communications module.

Set Auto Zero Maintenance

Selecting [CAL][21X] enters the Set Auto Zero Maintenance Mode.
This mode allows you to configure auto zero maintenance settings for weighing applications applied to the channel selected in the 3rd digit.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.

Set Averaging Samples \& Averaging Window

Selecting [CAL][22X] enters the Set Averaging Samples and Averaging Windows Mode.
This mode allows you to configure the number of input signal samples to average over, and the size of the averaging window in display counts applied to the channel selected in the 3rd digit.
Selecting [CAL][22X] enters the Set Averaging Samples and Averaging Windows Mode. When in this mode, the [AV_S] menu allows you to select the number of input signal samples to average over. After setting the number of samples, moving to the $\left[\mathrm{AV} _\mathrm{W}\right]$ menu allows you to configure the size of the averaging window in displayed counts.
The meter averages the input samples over the selected number of input samples (selected in the [AV_S] menu). This carries on in a continual process provided the input signal stays within the averaging window (set in the [AV_W] menu). If the sample moves out of the averaging window, the meter responds quickly to the change by displaying the non-averaged signal value. When the signal stabilizes, a new averaging window is established and averaging resumes.
You can program the number of samples you want to average the input signal over from 1 to 255 samples. The averaging window can be set to between 1 and 65535 counts.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.
See Input Signal Sampling Showing Averaging Window diagram opposite.

Example Procedure

The example procedure on Page 16 shows how to configure channel 1 (CH1) with an averaging sample rate of 10 counts and an averaging window of 1000 counts.

Input Signal Sampling Showing Averaging Window

Totalizer Settings

Selecting [CAL][23X] enters the Totalizer Settings Mode.
This mode allows you to configure the settings for the totalizer selected in the 3rd digit. An input value of 10000 counts is applied to a selectable time period to produce the required total value.
The cutoff is a programmable limit below which the input is not totalized.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.
Also see the Totalizing and Batching Supplement (NZ208) for further details on K factor and totalizer cutoff parameters.

Setup 32-point Linearization Tables

Selecting [CAL][24X] enters the Setup 32-point Linearization Tables Mode.
This mode allows you to set up the linearization table or tables using the manual or auto setup modes. The table or tables can then be selected to linearize the signals on channels 1 to 4.
See Linearization Table Notes on Page 28 for a description of memory related issues with linearization.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.
Also see the Linearizing Supplement (NZ207) for further details on linearization table setup and use.

Scale Analog Output

Selecting [CAL][25X] enters the Scale Analog Output Mode.
This mode allows you to calibrate and scale the analog output signal. Before calibrating the analog output in the calibration mode, the data source for the analog output must be configured in Code 1.
See the calibration modes diagram on Page 13 showing a breakdown of 1st, 2nd, and 3rd digits.
Also see the Analog Output Module Supplement (NZ200) for further details on the analog output module.
Also see Configure Data Source Procedure on Page 19 for an example of setting the analog output data source.

Calibration Mode Procedures Supplement

The Advanced Calibration and On Demand Mode Procedures Supplement (NZ203) describes in detail all Tiger 320 Series meter related calibration procedures configured in the calibration mode.

Two-point Calibration

Two-point calibration is the most commonly used method of calibrating Tiger 320 Series meters when a low and high input source is available.

Example Calibration Procedure

Calibrate channel 1 (CH1) using the two-point calibration method. Set the calibration mode display to [111].

START HERE

TWO-POINT CALIBRATION

Step 1
Enter
Brightness
Mode

Step 2

Pass Brightness Mode and enter Calibration Mode

Step 3

Set Calibration Mode to [111]:
1st Digit = 1
Selects calibration procedures
2nd Digit = 1
Selects 2-point calibration
3rd Digit $=1$
Selects CH 1 for calibration

Step 4
Enter Cal Mode [111] For 2-point calibration of CH 1

Step 5

5.1. Adjust display to desired reading for zero input
5.2. Apply the LOW input signal

Step 6

Set reading for zero load into meter and enter Span Mode

The low input source is applied to the meter when setting the zero value.
The high input source is applied to the meter when setting the span value.

AFrom St Step 7 i.1. Adjid desired span in 7.2. Ap input sig Step 8 span input input signal

7.1. Adjust display to desired reading for
7.2. Apply the HIGH

Save zero and span settings and re-enter Calibration Mode

Step 9
Select the No Function Calibration Mode [000]

Step 10
Save Calibration Mode [000] setting and enter Code 1

Step 11
Exit Code1.
Return to Operational Display

Input Signal Filtering and Averaging

Input signal filtering and averaging is configured in the calibration mode. Programmable averaging allows you to program the number of samples you want to average the input signal over (from 1 to 255 samples).
A programmable averaging window provides a quick response time to large input signal changes. The averaging window can be set to between 1 and 65535 counts.

Example Procedure:

Select an averaging sampling rate of 10 samples and an averaging window of 1000 counts for Channel 1 by setting [CAL] to [221].

See Advanced Calibration \& On Demand Mode Supplement (NZ2O3) for further calibration procedures.

[CodE 1]-Display Conficuration

CODE 1 - Display Configuration Modes

All meter display modes, except the display brightness mode, are configured in Code 1 (See diagram below). See Code 1 diagram on Page 18 for a breakdown of 1st, 2nd, and 3rd digits settings.

The top display is the primary display and is used during all meter configuration procedures, including configuring the second and third displays.

Setpoint Annunciators Mode

The setpoint annunciators mode is configured by changing the 1st digit in Code 1. The setpoint annunciators can be configured to operate as follows:

- On when the setpoint activates.
- All annunciators are permanently on and each one only goes off when its setpoint activates.
- All annunciators are always off (See Note 1 on Code 1 diagram on Page 18).
- Setpoint 1 annunciator comes on indicating a rising signal. Setpoint 2 annunciator comes on indicating a falling signal.
The example procedure on Page 22 shows how to select the setpoint annunciators to come ON when the setpoints are OFF (not active).

Update Display at Selected Sample Rate

The meter's default display update rate is 0.5 seconds and is set in the 2nd digit of Code 1 as [XOX].
The display can be configured to update at the analog sample rate selected in Code 2.
Selected in Code 2 the example procedure on Page 22 shows how to configure the display to update at typically 10 samples per second by setting Code 1 to [X2X].
For these settings to take effect, the analog sample rate must be set at [2XX] in Code 2.
See Code 2 - Channel 1 Measurement Task and Sampling Rate on Page 23 for an example.

Manual Loader Mode

The meter can be configured to function exclusively as a manual loader by setting Code 1 to [X1X].
See Analog Output Module Supplement (NZ200) for full details on manual loader mode functions.

Display Functions Mode

The display functions mode is configured by changing the 2nd and 3rd digits in Code 1:

- Selecting $[\mathrm{X5X}]$ enters the Data Source sub-menu.
- Selecting $[\mathrm{X6X}]$ enters the Display Format sub-menu.
- Selecting $[\mathrm{X} 7 \mathrm{X}]$ enters the Last Digit Text Character submenu.

Data Source - 2nd Digit [X5X]

The data source for the primary, second, or third display is configured by selecting 5 in the 2nd digit and the relevant display in the 3rd digit:

- [X50] = Primary Display.
- $[\mathrm{X} 51]=$ Second Display.
- [X52] = Third Display.

The 2nd digit in Code 1 can also be used to configure the data source for the remaining functions in the 3rd digit:

- $[\mathrm{X} 53]=$ Peak and Valley.
- $[\mathrm{X} 54]=$ Analog Output 1.
- $[\mathrm{X} 55]=$ Analog Output 2.
- [X56] = Totalizer 1.
- [X57] = Totalizer 2.

Selecting 5 in the 2nd digit enters a sub-menu and allows you to select the data from one of a number of meter registers as the data source for the displays or functions selected in the 3rd digit.
The example procedure on Page 19 shows how to select the data source for the primary display. The three digits are set to [X50].
The same procedure is used to configure the second and third displays, with the three digits set to [X51] for second display and [$\mathbf{X 5 2}$] for third display.

Display Format - 2nd Digit [X6X]

Selecting 6 in the 2nd digit enters the Display Format submenu where the following display format settings can all be configured:

- Last digit rounding.
- Display units (decimal, octal, or optional 12 or 24 -hour clock).
- Decimal point placement.

The example procedure on Page 20 shows how to configure the three display format modes for the 3rd digit selection.

Text Character-2nd Digit [X7X]

Selecting 7 in the 2nd digit allows you to select one of 54 characters and apply it to the last digit when the meter is in the operational display.
For example, if the meter was measuring a temperature, the display could be configured to display the reading with a C or an F in the last digit for ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.
The example procedure on Page 21 shows how to configure the last digit text character as "C" for centigrade (${ }^{\circ} \mathrm{C}$) for the 3rd digit selection.

Note:
After setting any or all the above three modes [X5X], [X6X], [X7X], the Code 1 display must be set back to [XOX] to leave Code 1 and carry on programming.

Select Data Source

Note 2:
These options are only for use with meters that have more than one display. With bargraph meters the PRIMARY display is the digital display, and the SECONDARY display is the bargraph display.

Note 3:
These functions are only available on selected input modules.

Note 4:

If Code 1's display modes have been entered (second digit set to 5, 6, or 7), the display will cycle between Code 1 and the display functions mode each time the PROGRAM button is pressed. To leave the cycle, the Code 1 digits must be reset to any relevant function between [X00] to [X20]. This takes you into Code 2.

Select Last Digit Text Character

[CodE 11-Display Configuration continued

Configure Data Source Procedure

The following example procedure describes how to select the source of the data to be displayed for the third digit selection.

Example Procedure:

Configure the Primary Display with the display [diSP] as the data source by setting Code 1 to [X50]. See diagram at the bottom of the page for data source selection options.

Programming Tip

To enter the Main Programming Mode press the P and
(1) buttons at the same time. To exit and return to the operational display, press the \boldsymbol{P} and Φ buttons again at the same time.

At the end of any procedure (Step 8 in this procedure) the P must be pressed before the Pand buttons are pressed,otherwise the meter returns to the operational display without saving the new settings.

START HERE
 CONFIGURE DATA SOURCE
 E

Configure Display Format Mode Procedure

The following example procedure describes how to configure the display format mode for the 3rd digit selection and covers:

- Last Digit Rounding.
- Display Units.
- Decimal Point Placement.

Example Procedure:

Configure the display format mode for channel 1 with rounding by 2's, decimal display units, and the decimal point placed between display digits 4 and 5 by setting Code 1 to [X61] to enter the Display Format Mode.

START HERE
CONFIGURE DISPLAY FORMAT

Step 1
Enter Brightness Mode

Step 3

Set Code 1 to [X61]: 1st Digit $=X$ Note relevant
2nd Digit $=6$ Selects display functions
3rd Digit $=1$ Selects Channel 1
Operational Display

Display Format Mode

『 d,5P
OUS Progana tre triee digisis ot the required display tomat mode

FIRST DIGIT	SECOND DIGIT	THIRD DIGIT
LAST DIGIT ROUNDING	DISPLAY UNITS	DECIMAL POINT PLACEMENT
0 No rounding	0 Decimal	0 No decimal point
1 Rounding by 2's	1 24-hour clock mode	1 -
2 Rounding by 5's 3 Rounding by 10's	Hours: Minutes: Seconds (6-digit version only)	$2-\quad x x x x x$
3 Rounding by 10's	$2 \begin{aligned} & \text { sion only) } \\ & 2 \text { 12-hour clock mode (12:30 am is }\end{aligned}$	$\begin{array}{lr} 3 & X . X X X X \\ 4 & X . X X X \end{array}$
Note:	displayed as 12:30A. 12:30 pm is dis-	5 X.XX
Selecting 1, 2, or 3	played as 12:30P)	6 X.X
in the 2nd digit of	$\begin{array}{ll}3 & 24 \text {-hour clock mode } \\ & \text { Days: Hours:Minutes (6-digit version }\end{array}$	7 Decimal Point set from the rear (X.XXXX to XXXXX)
this Mode config-	only)	See Note 3 on page 18.
the selected channel	$4-$	Also See Note 4 on page 18.
(see Step 4) as a	6 -	

Pass Brightness and Calibration Modes and enter Code 1

Step 5
Set the Display Mode to [106]:

1st Digit $=1$ Rounding by 2's
2nd Digit $=0$ Decimal display
3rd Digit $=6$ Decimal point

[CodE 1]-Display Configuration continued

Configure Last Digit Text Character Procedure

The following example procedure describes how to select the last digit text character.

Example Procedure:

Configure Channel 1 with C as its last digit text character (for ${ }^{\circ} \mathrm{C}$) by setting Code 1 to [X71] to enter the Select Last Digit Text Character Mode. See diagram opposite.

Select Last Digit Text Character

Step 7
Select [XOX] to leave
Code 1

Step 8
Save Last Digit Text Character setting

Step 9
Exit Code 2.
Return to Operational Display

Configure Setpoint Annunciators Procedure

The following example procedure describes how to configure setpoint annunciators.

Example Procedure:

Configure the setpoint annunciators to come ON when the setpoints are OFF (not active) by setting Code 1 to [1XX].

Configure Update at Sample Rate Procedure

The following example procedure describes how to configure the display to update at the sample rate selected in Code 2.

Example Procedure:

Update the display at the sample rate selected in Code 2 by setting Code 1 to [$\mathbf{X 2 X}$].

Pass Brightness and Calibration Modes and enter Code 1

Step 3

Select update at sample rate setting [X2X]

Step 4

Save setting and enter Code 2

Step 5

Exit Code 2.
Return to Operational Display

Programming Tip

The Configuring Setpoint Annunciators and the Update at Sample Rate procedures can be combined so that Code 1 could be set to [12X] (for the above examples) in a single procedure.

[CodE 2]-Channel 1 Measurement Task \& Samoling Rate

The Tiger 320 Series DI-503 meter can be configured to measure almost any input signal. The measurement task and sampling rate for Channel $1(\mathrm{CH} 1)$ is configured in the three digits of Code 2. The diagram below lists the available configuration selections in Code 2.

Example Procedure:

Configure CH 1 for a voltage input with 10 samples/second (60 Hz rejection) sampling rate and output rate of 0.1 seconds by setting Code 2 to [000].

Post processing functions refer to functions that occur to the input after it has been configured and scaled.

Post processing for Channel 1 (CH1) is configured in the first digit of Code 3. The diagram below lists the available post processing configuration selections in Code 3 (1st digit only).

Note 5:
If only 4 kB memory installed,
functions 2 to 6 are not avail-
able in:
- Code 3 second digit.
- Code 4 third digit.
• Code 7 second digit.

START HERE

CONFIGURE CH1

 POST PROCESSING FUNCTIONS
Step 1

Enter Brightness Mode

Step 2

Pass Brightness Mode Calibration Mode, Codes 1 and 2, and enter Code 3

Step 3

Set Code 3 to [100]: 1st Digit = 1 Square root of CH1
2nd Digit $=0$ No linearization
3rd Digit $=0$ ASCII Mode

Print Mode - Data Printing Direct to Serial Printer

Print mode data printing is a simple method of capturing data using the meter's print mode. The data can be printed directly to a serial printer from the meter.
The print mode uses the meter's serial communications port to connect to a remote serial printer. The data can be printed with or without a Day: Month: Year or Hours: Minutes: Seconds time stamp.
Time stamp settings are configured in Code 8.

SI

Example Procedure:

Configure the meter to apply square root to the CH 1 signal by setting Code 3 to [100].

Note 6:
These functions are not available on all models and in some cases require additional hardware.

From Step 3

Step 4

Save Post Processing setting

Programming tip

For full details on the Serial Mode, see Serial Communications Output Module supplement.

Print Mode - Data Printing Direct to PC

The print mode can also be used to print data to a PC where it is logged in a Windows Terminal program.
The print mode uses the meter's serial communications port to connect to the PC. The data can be logged with or without a Day: Month: Year or Hours: Minutes: Seconds time stamp. Time stamp settings are configured in Code 8.

[CodE 47-Channel 2 Measurement Task \& Samoling Rate

Code 4 is a single code that combines all the configuration and post processing functions available for Channel 2.

When a dual input signal conditioner is installed, the second input signal is processed and displayed on CH 2 .
Measurement task and 32-point linearization for CH 2 is configured in the 1st and 2nd digits of Code 4. The diagram opposite lists the available configuration selections in Code 4.

Example Procedure:

Configure CH 2 for a direct voltage input with no linearization by setting Code 4 to [010].

See I-Series Input Modules Guide (Z87) for procedures to set up a dual input module.

Step 2

Pass Brightness Mode, Calibration Mode, and Codes 1 to 3 , and enter Code 4

Step 3
Set Code 4 to [030]:
1st Digit $=0$ Selects voltage, current 2nd Digit $=1$ Selects direct

START HERE

CONFIGURE CH2 MEASUREMENT TASK

Step 1
Enter Brightness Mode

Operational Display

[CodE 5]-Channel 3 Functions

Code 5 is a single code that combines all the configuration and post processing functions available for Channel 3.

When a triple input signal conditioner is installed, the third input signal is processed and displayed on CH 3 .
Post processing and measurement task functions for CH3 are configured in the 1st, 2nd, and 3rd digits of Code 5. The diagram opposite lists the available configuration selections in Code 5.

Example Procedure:

Configure CH 3 to display the square root of a voltage input by setting Code 5 to [11X].

See I-Series Input Modules Guide (Z87) for procedures to set up a triple input module.

START HERE
CONFIGURE CH3 FUNCTIONS

Step 1

Enter Brightness Mode

Step 2

Pass Brightness Mode,
Calibration Mode, and Codes 1 to 4 and enter Code 5

Step 3

Set Code 5 to [11X]:
1st Digit $=1$ Selects square root of CH 3
2nd Digit $=1$ Selects voltage, current 3rd Digit $=X$ Not relevant

Step 4
Save CH3 setting

FIRST DIGIT
CH3 POST PROCESSING

0 Direct Display of Input (no processing) Square Root of Channel 3
Inverse of Channel 3
34 kB Meters
32-point Linearization of CH3 using Table 1 32 kB Meters
32-point Linearization of CH3 using Table 3

Note:

All linearization tables are set up in the Calibration Mode [24X].

FOR REAL-TIME CLOCK \& TIMER HRS:MIN:SEC
HRS:MIN
-
1 Second Count UP Timer
1 Second Count DOWN Timer 6 7 -

From Step 4

Step 5

Exit Code 6.
Return to Operational Display

CoodE 67-Channel 4 Functions

Code 6 is a single code that combines all the configuration and post processing functions available for Channel 4.

When a quad input signal conditioner is installed, the fourth input signal is processed and displayed on CH 4 .
Post processing and measurement task functions for CH 4 are configured in the 1st, 2nd, and 3rd digits of Code 6. The diagram opposite lists the available configuration selections in Code 6.

Example Procedure:

Configure CH 4 as direct display of voltage input by setting Code 6 to $[\mathbf{0 1 X}]$.

See I-Series Input Modules Guide (Z87) for procedures to set up a quad input module.

START HERE
 CONFIGURE CH4 FUNCTIONS

Step 1
Enter Brightness Mode
\longrightarrow

The 3rd digit of Code 7 performs various math functions between channel 1 and channel 2 and stores this data in the result register.
The data in the result register

FIRST DIGIT	
RESULT PROCESSING	
$\mathbf{0}$	Direct Display of Result as per processing per- formed in 2nd or 3rd digit
1	Square Root of Result
2	Inverse of Result
3	-

SECOND DIGIT	THIRD DIGIT
CODE 7 - RESULT PROCESSING	
32-POINT LINEARIZATION FOR RESULT	MATH FUNCTIONS FOR RESULT
0 No Linearization on Result	0 Result Register not Updated
1 32-point Linearization on Result using Table 1 2 32-point Linearization on Result using Table 2. See Note 5	1 pH Meter $(\mathrm{CH} 1=$ Tbuff, $\mathrm{CH} 2=$ pH)
3 32-point Linearization on Result using Table 3. See Note 5	2 Result $=\mathrm{CH} 1$, Setpoint $2=\mathrm{CH} 2$
4 32-point Linearization on Result using Table 4. See Note 5	3 Result $=\mathrm{CH} 1+\mathrm{CH} 2$
5 125-point Linearization on Result (Tables 1 to 4 cascaded). See Note 5	$\begin{array}{ll} 4 & \text { Result }=\mathrm{CH} 1-\mathrm{CH} 2 \\ 5 & \text { Result }=(\mathrm{CH} 1 \times 20000) / \mathrm{CH} 2 \end{array}$
6 32-point Linearization on Result (Tables 1 to 4 selected from the rear of the meter).	```6 Result = CH1 x CH2/10 000 7 Result = CH1```
The selected table is not available if $\mathrm{CH} 2, \mathrm{CH} 3$, or CH 4 is operating in the analog mode. CH 1 must be set to Voltage,	

Example Procedure:

Configure Code 7 to add the input of CH 1 and CH 2 and directly display the result by setting Code 7 to [003].

Note 5:
If only 4 kB memory installed,
functions 2 to 6 are not avail-
able in:
- Code 3 second digit.
- Code 4 third digit.
- Code 7 second digit.

START HERE

Pass Brightness Mode, Calibration Mode, and Codes 1 to 6 and enter Code 7

Step 3

Set Code 7 to [003]:
1st Digit $=0$ Selects direct display of result Enter Brightness Mode
CONFIGURE RESULT PROCESSING

Step 1

See I-Series Input Modules Guide (Z87) for procedures to set up a dual, triple, or quad input module.

Step 2

\square

Step 4

Save CH1 \& CH 2 Result
Processing setting

From Step 4

Step 5

Exit Code 8.
Return to Operational Display

「CodE 8]-Data Logoing \& Print Mode

Up to 4000 samples can be logged within the meter in the cyclic or linear FIFO mode and saved for later downloading to a PC, using a terminal evaluation program, or printing directly to a serial printer.

Data logging can be triggered (activated) from a setpoint, the program button, or from an external switch. See the 3rd digit in the diagram below.
Data from up to four selectable registers can be logged with one of the following printer or spreadsheet style time and date stamps. All time and date stamps are generated from an optional real-time clock (see the 2nd digit in the diagram below):

- No time stamp.
- Month - Day - Year. Hours:Minutes:Seconds.
- Day - Month - Year. Hours:Minutes:Seconds.
- Hours:Minutes:Seconds.

Printer style time and date stamps have a carriage return and line feed. Spreadsheet style time and date stamps are continuous on a single line.

See Serial Communications Module Supplement (NZ202) for full details on the Data Logging and Print Mode Options.

[CoodE 9]- Functions for Digital Inout Pins

The TEST, HOLD, and LOCK pins are located at the rear of the meter to accommodate external switched digital inputs. When switched to the COMMON pin, they can be programmed in Code 9 to perform remote resetting functions to add to the functionality of the meter.
Note:
CAPTURE, HOLD, and LOCK pins can be a setpoint activation source. See Setpoint Programming mode.

FIRST DIGIT	SECOND DIGIT	THIRD DIGIT
CODE 9 - FUNCTIONS FOR DIGITAL INPUT PINS		
DISPLAY TEST PIN	HOLD PIN	LOCK PIN
0 Display test only 1 Reset Counter Channel 1 and Subtotal at Power-up 2 Reset Counters Channel 1, 2, 3, 4, Total 1, and Total 2 at Power-up 3 Reset Total 1, and Total 2 at Power -up	0 Display Hold 1 Reset Channel 1 2 Reset Total 1 and Total 2 3 Reset Total 2 4 Reset Peak, Valley 5 Reset Tare 6 Set Tare 7 Unlatch (de-energize) all Setpoints	0 Key Lock 1 Reset Channel 1 2 Reset Channel 2 3 Reset Channel 3 4 Reset Channel 4 5 Reset Tare 6 Reset Total 7 Unlatch (de-energize) all Setpoints

All setpoint activation and control settings are selected and configured using the front panel buttons in the setpoint programming mode. Or, software configured via the meter configuration utility program if the meter is connected to a PC through the serial port. The meter has six software driven setpoints, independently configured to operate within the total span range of the meter and the selected input module.

Relay Output Modules

Four standard relay output module options provide a selection of 16 relay configuration options for DI-50 meters.
Three electromechanical relay output modules support a combination of $4 / 5$ A Form A and 9/10 A Form C relays providing 12 configuration options. A solid state relay (SSR) output module supports 300 V , 210 mA DC SSRs.
A 22 opto-isolated I/O plug-in module can support six inputs and up to 16 outputs. The standard plug-in module has six inputs and six outputs that can be extended to 16 outputs with a 10 output add-on board.

Setpoint Programming Mode

See the Setpoint Programming Mode Logic Diagram opposite.
The setpoint programming mode is entered by pressing the meter's \boldsymbol{P} and \square buttons at the same time.

Setpoint Activation Values

Each setpoint activation value is individually programmed. Setpoint activation values can be set within the total span range of the meter and the selected input module.

Setpoint and Relay Control Settings

See the Setpoint and Relay Control Settings diagram on Pages 34 and 35.
The control settings provide access to the following setpoint and relay functions for configuration using the meter's 1st, 2nd, and 3rd digits:

- 1st Digit - Relay Energize Functions.
- 2nd Digit - Setpoint Activation Source.
- 3rd Digit - Setpoint Delay, Timer, and Reset and Trigger Functions.

PID Control Settings

The PID (proportional, integral, <derivative) control function provides exceptional control stability during control process applica-
tions. PID control is available from the following outputs:

- Setpoint / relay output.
- Analog output.
- Relay and analog output at the same time.

PID control from the setpoint / relay output is available from SP1 and SP2 only.
There are two PID control outputs available via the analog output:

- PID1 - stored in register 50.
- PID2 - stored in register 51.

Timer Modes

Each setpoint can be programmed to operate the relay in one of the following seven resident timer modes:

Normal Mode Timer

Single actuation, delay-on-make (DOM) and delay-onbreak (DOB).

Normally OFF/Pulsed ON Timers

Repeat ON Mode Timer - multiple actuation, programmable off- and on-time.

Pulse ON Mode Timer - single actuation, programmable DOM and maximum on-time.

1-Shot ON Mode Timer - single actuation, programmable DOM and minimum on-time.

Normally ON/Pulsed OFF Timers

Repeat OFF Mode Timer - multiple actuation, programmable off- and on-time.

Pulse OFF Mode Timer - single actuation, programmable DOB and maximum off-time.

1-Shot OFF Mode Timer - single actuation, programmable DOB and minimum off-time.

Hysteresis or Deviation

Each setpoint can be individually programmed to energize the relay in the hysteresis or deviation mode, with or without initial startup inhibit.
Hysteresis (deadband) is the programmable band above and below the setpoint value that determines when and for how long the relay is energized or de-energized. The setpoint can be programmed to energize the relay above or below the setpoint value.

The hysteresis setting can be any value between 0 and 65535 counts. The number of counts selected act both positively and negatively on the setpoint, forming a hysteresis band around the setpoint.
For example, if the setpoint setting is 500 counts and the hysteresis setting is 10 counts, the hysteresis band around the setpoint setting is 20 counts, starting at 490 counts and ending at 510 counts.

Note:

If hysteresis is set with ZERO counts, the relay energizes $A T$ or ABOVE the setpoint value.

Deviation (passband) is the programma- Deviation
ble band around the setpoint in which the setpoint can be programmed to energize s the relay inside or outside the deviation band.

The deviation setting can be any value between 1 and 65535 counts. The number of counts selected act both positively and negatively on the setpoint, forming a deviation band around the setpoint.
For example, if the setpoint setting is 1000 counts and the deviation setting is 35 counts, the deviation band around the setpoint setting is 70 counts starting at 965 counts and ending at 1035 counts.

Initial Start-up Inhibit.

On power-on, start-up inhibit prevents the relay from energizing on the first setpoint activation cycle. Depending on how the meter has been programmed, initial start-up inhibit either functions during a falling input signal, or during a rising input signal.

Relay Time Control Modes

The following time control mode settings can cover almost every relay timer application.
All setpoints can be individually programmed to operate a relay in one of the following time control modes above or below the setpoint value.

Normal Mode

This mode individually programs a relay's setpoint with delay-on-make (DOM) and delay-on-break (DOB) settings.

Normally OFF / Pulsed ON Modes

These are delay modes were the relay is normally off and pulses on when the setpoint activates.

Pulse ON mode (Programmable ON-time)

Single actuation, programmable DOM and on time settings.

1-Shot ON mode (Programmable Minimum ON-time)

Single actuation, programmable DOM and minimum on time settings.

Normally ON / Pulsed OFF Modes

These are delay modes were the relay is normally on and pulses off when the setpoint activates.
1-Shot OFF mode (Programmable Minimum OFF-time)
Single actuation, programmable minimum off time and DOB settings.

Pulse OFF mode (Programmable OFF-time)

Single actuation, programmable off time and DOB.

Repeat OFF Mode

Multiple actuation, programmable off and on time settings.

Each setpoint can be individually configured for basic to advanced operations in the following three levels. Each operational level is designed to provide only the required relevant setpoint and relay functions.
The modes at Level 2 and Level 3 can be set to OFF for each individual setpoint, ensuring that no other functions are programmed to influence the setup.

Level 1 Setpoint \& Relay Basic Mode

:This is an easily programmable mode for users who require the following basic setpoint and relay functions:

First Digit - Relay Energize Functions

Relays programmed to energize above or below the setpoint value.

Second Digit - SP Activation Source

Setpoints programmed to activate from selectable meter registers or one of six external switched inputs.

Third Digit - Setpoint Latching

Relays programmed with latching and manual reset options.

Level 2 Setpoint \& Relay Intermediate Mode

Level 2 uses all Level 1 functions and is further extended by the following programmable modes. The functionality of the relay energize functions are extended by allowing the relays to be programmed with or without initial start-up inhibit.

Hysteresis, Deviation \& PID Mode

This mode adds extra functionality to the basic mode by providing programmable hysteresis or deviation settings for all setpoints, or PID control from setpoints SP1 and SP2.

Timer Modes

These modes add even more functionality to the basic and intermediate mode by providing each setpoint with a choice of one of seven resident programmable timers.

Level 3 Setpoint \& Relay Advanced Mode

[^0]
Setpoint Programming Mode - Programming Procedures

Example Procedure:

The following procedure describes how to program setpoint 1 (SP1) for the following Level 1 setpoint and relay functions:

- SP1 to activate from Channel 1 (CH1).
- Relay to energize above or below SP1 value.
- Relay to latch with manual relay reset.

START HERE
CONFIGUR
LEVEL 1
SETPOINT
FUNCTION
Step 1

Enter Setpoint
Programming Mode

Step 2
Adjust setpoint 1 (SP1) activation value, e.g., 500 counts

Step 3
Save SP1 activation

See Setpoints and Relays Supplement (NZ201) for procedures to program all setpoint and relay operational levels (Level 1 to Level 3).

Programming tip

All required setpoint activation values (SP1 to SP6) can be adjusted before programming setpoint and relay control function settings. See Setpoint Programming Mode Logic Diagram on Page 34.

Setpoint \& Relay Control Settings Diagram

The diagram below and continued on Page 35 shows the 1st, 2nd, and 3rd digit control settings for the setpoints and relays.

Set Up Register Reset and Setpoint Trigger Functions
Third digit
set to [X7]

A Tiger 320 Series meter has 6,144 registers which are provided for use by the operating system and the powerful Custom Macro Programming system．

40 Manually Selectable Registers

Using the front panel buttons，there are 40 registers that may be selected for use within the following functions：
－［CodE＿1］－Display Configuration［X50］．Selection of a register as the data source for displays，peak and valley， totalizers and analog outputs．（See pages 18 \＆19）
－Setpoint Control Settings［X1X］．Selection of a register as the data source for a setpoint．（See Page 34）
－Setpoint Control Settings［XX7］．Selection of a desti－ nation register that is to be reset by a setpoint with the contents of a selected source register．（See Page 35）
－Setpoint Control Settings［XX7］．Select which regis－ ter＇s contents are to be copied into the destination regis－ ter by a setpoint．（See Page 35）
The 40 registers that can be selected as a data source，a reset source or a reset destination for the functions above are shown in the table on the right．
The table shows，in seven columns，the functions where these registers can be used．
Where a register is more likely to be used in a particular function，a closed circle \bullet is shown in the column．For those functions where a register is less likely to be used，an open circle ${ }^{\circ}$ is shown．
No register number is shown for the first 11 functions， because these 11 functions are identified in the display menu for direct selection by their code names．
When cycling through the Registers Menu and then Registers 1 to 244，the numerical Register Set will incre－ ment through each decade in turn，from 1 to 0 ，while the button is held down．When［200］is reached，［oFF］or［tArE］ will be displayed．To select a specific number set，the button should be released and pressed again each time the left most decade displays the desired number for that decade．
To quickly exit the numerical 1 to 244 Register Set，hold the \downarrow button down while cycling through the decades，and release it when［oFF］or［tArE］appears．

Registers that Should Not be Used

The following registers are contained within the selectable 1 to 244 Register Set，but they should not be selected because they are either reserved for future use，or for use by the operating system only：
15，38，47－48，52－53，61－64，123－128，140－141，234－244
Any selection of these Registers may cause a malfunction．

Register Functions	Register Numbers	Data Source for Displays	Data Source for Peak \＆ Valley	Data Source for Analog Outputs 1 \＆ 2	Data Source for Totalizers 1 \＆ 2	Data Source for Setpoints	Reset Source	Reset Dest．
Display［diSP］	－		\bullet	\bullet	\bullet	\bullet		
Result［rESLt］	－	－	－	－	－	－	\bullet	－
CH1［Ch1］	－	\bullet	\bullet	\bullet	\bullet	\bullet	－	\bullet
CH2［Ch2］	－	－	－	－	－	－	－	－
CH3［Ch3］	－	－	\bullet	\bullet	\bullet	\bullet	－	－
CH4［Ch4］	－	－	\bullet	\bullet	\bullet	\bullet	－	\bullet
Total 1 ［tot＿1］	－	－	－	\bullet		\bullet	\bullet	－
Total 2 ［tot＿2］	－	\bullet	－	\bullet		\bullet	\bullet	\bullet
Peak［PEAK］	－	。				\bullet	－	\bullet
Valley［VALEY］	－	。				－	－	\bullet
Tare［tArE］	－	。	。	－		－	。	\bullet
PID Output 1	50	－	－	－		－		
PID Output 2	51	。	－	－		。		
Smart Result 1	54	。	。	。				。
Smart Result 2	55	。	。	－				－
Smart Result 3	56	。	。	－				－
Smart Result 4	57	。	。	－				－
Smart Result 5	58							
Smart Result 6	59							
Smart Result 7	60							。
Analog Output 1	83	。				。	。	。
Analog Output 2	84	。				。	。	。
Timer 1	95	。				。	。	。
Timer 2	96	。				。	。	。
Smart Reset Offset 1	121							－
Smart Reset Offset 2	122							\bullet
Clock－Seconds	213					－		
Clock－Minutes	214					。		
Clock－Hours	215					。		
Clock－Days	216					。		
Clock－Date	217					。		
Clock－Month	218					。		
Clock－Year	219					。		
Setpoint Latch	221							\bullet
Relay De－energize	222							\bullet
Zero Offset－Result	227					－		
Zero Offset－CH1	228					－		
Zero Offset－CH2	229					－		
Zero Offset－CH3	230					－		
Zero Offset－CH4	231					－		

Resetting and Incrementing Using Setpoints

Setpoints may be used to reset and／or increment registers．In the example shown below， 2 liter soft drink bottles are being filled and packed 12 to a case．Using the setpoint reset and increment feature，the number of bottles and the total number of filled cases is easily calculated and displayed．Totalizer 1 counts from 0 to 2 ，resets，and repeats． CH 2 counts from 0 to 12 ，resets，and repeats．

USING SETPOINTS TO INCREMENT AND RESET REGISTERS

Bottom Panel Connector Pinouts

WARNING: AC and DC input signals and power supply voltages can be hazardous. Do Not connect live wires to screw terminal plugs, and do not insert, remove or handle screw terminal plugs with live wires connected.

Input Signal - Pins 1 to 6

See the I-Series Input Modules Guide (Z87) for connection details of all input modules. On most single input signal conditioners, usually Pin 1 is the signal high pin ($\mathrm{Hi}+$) and Pin 3 is the signal low pin (Lo -).

Function Pins - Pins 8 to 12

Pin 8 - Program Lock. By connecting the PROGRAM LOCK pin to the COMMON pin (pin 11 on the main PCB), the PROGRAM LOCK pin allows the meter's programmed parameters to be viewed but not changed.

NOTE: The meter uses plug-in type screw terminal connectors for most input and output connections and an RJ-6 phone connector for the optional RS-232 or RS-485 serial outputs.

Pin 9 - Hold Reading. By connecting the HOLD READING pin to the COMMON pin (pin 11), the HOLD READING pin allows the meter's display to be frozen. However, A/D conversions continue and as soon as pin 9 is disconnected from pin 11 the updated reading is instantly displayed.
Pin 10 - Display Test and Reset. The DISPLAY TEST and RESET pin provides a test of the meter's display and resets the microprocessor when the DISPLAY TEST and RESET pin is connected to the COMMON pin (pin 11).
Pin 11 - Common. To activate the HOLD, TEST and RESET, or LOCKOUT pins from the rear of the meter, the respective pins have to be connected to the COMMON pin.
Pins 14/15-AC/DC Power Input. These are the pins that supply power to the meter. See Power Supply for details of the standard and optional low voltage power supply.
Chassis Ground Tab. Only on versions with metal sheath casing.

Analog Outputs

Pin 16 - Positive (+) analog output 1.
Pin 17 - Negative (-) analog output 1 and 2.
Pin 18 - Positive (+) analog output 2.

Serial Outputs RS-232 or RS-485

Pin No.	RS-232	RS-485
$\mathbf{1 9}$	Reserved for future use	Reserved for future use
$\mathbf{2 0}$	RXD. Received Serial	B (Low)
$\mathbf{2 1}$	TXD. Transmitted Serial	A (High)
$\mathbf{2 2}$	+5 VDC to power external converters	+5 VDC to power external converters
$\mathbf{2 3}$	Isolated Ground	Isolated Ground
$\mathbf{2 4}$	Reserved for future use	Reserved for future use

Ethernet - The Ethernet carrier board has the same analog output pins, with 10/100Base-T Ethernet (RJ-45 Socket).

Relay and Logic I/O Modules

Plug-in I/O modules include solid state relays, logic outputs or open collector outputs; 6 inputs \& 16 outputs of opto-isolated I/O can be connected to an external DIN Rail terminal block module.

Fully Programmable with custom applications

Relay Modules with up to two 4/5A Form A Relays, and up to two 9/10A Form C Relays

Relay Modules with up to 4 Independent 300V
(210mA DC only) SSRs

Relay Modules with five or six 4A Form A Relays

Open Collector / TTL / 5VDC Output (50 mA)

Relay Modules with up to four 5A Form A Relays

Flash Card Memory Module

1. Install and wire meter per local applicable codes/regulations, the particular application, and good installation practices.
2. Install meter in a location that does not exceed the maximum operating temperature and that provides good air circulation.
3. Separate input/output leads from power lines to protect the meter from external noise. Input/output leads should be routed as far away as possible from contactors, control relays, transformers and other noisy components. Shielding cables for input/output leads is recommended with shield connection to earth ground near the meter preferred.

4. A circuit breaker or disconnect switch is required to disconnect power to the meter. The breaker/switch should be in close proximity to the meter and marked as the disconnecting device for the meter or meter circuit. The circuit breaker or wall switch must be rated for the applied voltage (e.g., 120VAC or 240VAC) and current appropriate for the electrical application (e.g., 15A or 20A).
5. See Case Dimensions section for panel cutout information.
6. See Connector Pinouts section for wiring.
7. Use 28-12 AWG wiring, minimum $90^{\circ} \mathrm{C}(\mathrm{HH})$ temperature rating. Strip wire approximately 0.3 in . ($7-8 \mathrm{~mm}$).
8. Recommended torque on all terminal plug screws is 4.5 lb-in ($0.51 \mathrm{~N}-\mathrm{m}$).

Case Dimensions

45mm CASE

Tiger TI-500 Series Ordering Info

Add to the base model number the order code suffix for each standard option required. The last suffix is to indicate how many different special options and or accessories that you may require to be included with this product. *Except when the Ethernet serial output option is selected, a meter ordered with any of these outputs requires an Output Module Carrier Board which should be automatically included with the order, with an additional charge of $\$ 8$. (See special Options and Accessories section) Ordering Example: TI500-6SP-PS1-IA01-AIC-OR12-OA2 (CR-CHANGE + COA-4.5/5/6)

Base Model Number Uescription US\$ List	
TI-500. 45x72mm, No Display, Setpoints indicator only. TI-501...... 45x72mm, 6 Digit, E Version TI-502. 96x48mm, 6 Digit, Alphanumeric, E Version TI-503. 96x48mm, 6 Digit, LCD, E Version . - Macro programming (Custom Autonomous Application) capability option. add - For data logging option use OR91	IDD2 . . Dual Input DC-Millivolts, 50mV DC(100.00)
	IDD3 . . Dual Input DC-Mililiamps, 2mA DC
	IDD4 . . Dual Input, Volts/millivolts 2V/50mV DC(100.00)
	IDD5 . . Dual Input DC Volts and 4-20 mA IDD6 . . Dual Input DC mV and 4-20 mA .
	IDF2 . . Dual Frequency.
	IDP1 . . Dual Process Loop Input, 4-20mA (0-100.00)
	IDP2 . . Dual Input, 3-wire RTD / 4-20mA (0-100.00)
	IDP3 . . Dual Input, K/R/S/T/J Thermocouple / 4-20mA(0-100.00)
	IDR1 . . Dual Resistance Input, 0.2/2/20K
	IDS1 . . Dual Strain Gage Input, 4 wire $\mathbf{2 m V / V}$
STANDARD OPTIONS FOR MODELS LISTED ABOVE	IDS2 . . Dual Pressure Input, 4 wire $2 \mathrm{mV} / \mathrm{V}$.
	IDS3
Order Code Suffix Description US\$ List	IDT1 . . Dual Thermocouple input J/K/R/T
- DISPLAY	IDT3 . . Dual Input, 3-wire RTD / Volts
	IDT4 . . Dual Input, Thermocouple / Volts 2 V D
	IDT5 . . Dual Input, K/R/S/T/J Thermocouple / DC-Millivolts, 50 mV DC
RR. $2 \times$ Red LED, 0.31 inch high	IF06. . . Line Frequency, 50-300VAC
B........ $1 \times$ Bright Red LED, 0.31 inch high	
BB...... $2 \times$ Bright Red LED, 0.31 inch high	IGYX* . .Direct Pressure (Abs. or Differentia//Gage) with 2 Digital Inputs
BBB $3 \times$ Bright Red LED, 0.31 inch high	IGYY* . Dual Direct Pressure (Absolute or Differential/Gage)
G. $1 \times$ Green LED, 0.31 inch high	*Call Texmate prior to ordering to determine the value for \dot{Y} \& Z ((GiAA to icicz)
GG $2 \times$ x Green LED, 0.31 inch hig	
GGG $3 \times$ Green LED, 0.31 inch highCustom . . $3 \times$ LED, 0.31 inch high, custom color combination. .	IH01 . . pH Indication w/ Manual Tempe
	IH02 . . pH Indication w/ Automatic Temperature Compensation.
Custom. . $3 \times$ LED, 0.31 inch high, custom color combination. . .	IP01 . . Process Loop, 4-20mA (0-100.00)
	IPO2 . . Process Loop, 4-20mA (0-100.0) w/24V
- POWER SUPPLIES	1 IP06 . . Process Loop, 4-20mA(0-100.00) w/24VDC Exc and A
PS1 85-265VAC/95-370VDC PS2. 15-48VAC/10-72VDC	1 P 07 . . Universal Process $2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 2 \mathrm{~mA} / 20 \mathrm{~mA} /$ Custo
- INPUT MODULES \qquad Unless otherwise specified Texmate will ship all modules precalibrated with factory preselected ranges and/or scalings as shown in BOLD type.	IP09
	IP10 . . Process + 3 Digital Inputs.
	IQD1 . . Quad DC Volts, 2V DC
	IQD2 . . Quad DC-Millivolts, 50 mV DC(100.00)
IA06 . . AC-Volts True RMS, 200/300V AC	IR01 . . Resistance, 2-, 3-, or 4-Wire, 200 $/ \mathbf{/ 2 K} \mathbf{/} / 20 \mathrm{~K} \Omega$
1 A07 . . AC-Volts True RMS, 200mV/2V	IR02 . . 3 -Wire Potentiometer $1 \mathrm{~K} \Omega$ min (0-F.S.)
IA08 . AC-mA True RMS, $2 / 20 / 200 \mathrm{~mA} \mathrm{AC}$	IR03 . . Linear Potentiometer, 3-wire,
A10 . AC-Millivolt, Scaled RMS,IA11 . AC-Amps True RMS, 0 -5	ISD1* . Smart DC Volts, High Speed 16 bit, 1, 10, 50, $200,400,800 \mathrm{~Hz}$ update rates
	ISD2**. Smart DC Volts, High Speed 16 bit, 1, 10, $60,240,480,960 \mathrm{~Hz}$ update rates
\|A12	ISD3** Smart DC Volts, High Speed 16 bit, 1 Hz to 800 Hz w/dual isolated SSRs.
	ISD4
IC02 . . Quadrature Counter IC03 . . Quadrature Counter with Dual SSRs .	ISD6**. Smart DC Volts, Hi Resolution \& Accuracy 24 bit (1 million counts) $1-480 \mathrm{~Hz}$
	ISD7**. SmartDC Volts, Hi Resolution \& Accuracy 24 bit $1-400 \mathrm{Hzz}$ w/dual isolated SSRs.
ID01 . . DC-Volts, 2/20/200V/Custom w/24V DC Exc. ISD8**. Smart DC Volts, Hi Resolution \& Accuracy 24 bit 1 -480Hz w/dual isolated SSRs ID02 . . DC-Millivolt, 20/50/100/200mV DC w/24V DC Exc. ISD9 . . Smart Voltage Resistance . ID03 . DC-Milliamp, 2/20/200mA DC w/24V DC Exc ISDA*. Smart Dual Input DC Volts, 16 bit, 1 Hz to 20 Hz update (50 Hz rejection) ID05 . . DC-Volts 2/20/200/Custom V DC w/Offset and 24V Exc. ISDB** Smart Dual Input DC Volts, 16 bit, 1 Hz to 20 Hz update (60 Hz rejection)	
ID07 . . DC-Milliamp, 2/20/200mA DC w/Offset and 24V ExC	
	IS01 . . Strain Gage 5/10VDC Exc., 20/2mV/V, 4/6-wire
	IS02 . . Pressure 5/10VDC Exc., 20/2mV/v, 4-
	IS03 . . Pressure 5/10VDC Exc., 20/2mV/V, 4/6-wire w/Autocal

Tiger TI-500 Series Ordering Infocontinued

Order Code Suffix	Description	US\$ List

ISO4 . . Pressure Ext Exc., 20/2mV/V, 4- or 6-wire
IS05 . . Pressure/Load Cell 20/2mV/N, 5/10V Exc 4-wire
IS06 . . Pressure/Load Cell Ext Exc., 20/2mV/V, 4-wire.
IS07 ... Pressure $20 / 2 \mathrm{mV} / \mathrm{V}$ with High Impedance and External Excitation
ISR1*. . Smart Single 3-wire Potentiometer (50 Hz).
ISR2** Smart Single 3-wire Potentiometer (60 Hz)
ISR3*. . Smart Dual 3-wire Potentiometer (50 Hz)
ISR4** Smart Dual 3 -wire Potentiometer (60 Hz)
ISS1* . Smart Pressure/Load Cell. Standard Resolution 16 bit (50 Hz rejection)
ISS2**. Smart Pressure/Load Cell. Standard Resolution 16 bit (60 Hz rejection)
ISS3* . Smart Pressure/Load Cell. Hi Res \& Accuracy 24 bit (50 Hz rejection)
ISS4**. Smart Pressure/Load Cell. Hi Res \& Accuracy 24 bit (60 Hz rejection)
ISS5* . . Dual Smart Pressure/Load Cell. Standard Resolution 16 bit (50 Hz rejection)
ISS6**. Dual Smart Pressure/Load Cell. Standard Resolution 16 bit (60 Hz rejection)
ISS7*. . Smart Quad Pressure/Load Cell (50 Hz).
ISS8** Smart Quad Pressure/Load Cell (60 Hz).
ISS9 . . Smart Dual Input, Load Cell and Process (4-20mA)
ISSA . Smart Quad Potentiometer/Resistance
ISSB . . Smart Dual Input, Load Cell and RTD.
ISSC* . Smart Triple Input, Load Cell and two Digital Inputs (Frequency/Counter)
ISSD** .Smart Triple Input, Load Cell and two Digital Inputs (Frequency/Counter)
IST1**. .Smart Six Inputs, 3 Pt 100 RTD, 2 Process and 1 Digital Input (50 Hz) .
IST2**. Smart Six Inputs, 3 Pt 100 RTD, 2 Process and 1 Digital Input (60 Hz).
IST3*. . Smart Quad Thermocouple (50 Hz)
IST4**. Smart Quad Thermocouple (60 Hz)
IST5*. . Smart Dual RTD with 0.01 degree resolution (50 Hz)
IST6** . Smart Dual RTD with 0.01 degree resolution (60 Hz)
IST7*. Smart Triple RTD with 0.01 degree resolution (50 Hz)
IST8**. Smart Triple RTD with 0.01 degree resolution $(60 \mathrm{~Hz})$
IT01. . . Thermocouple Input, J/K/R/S/T/B/N
IT02. . . RTD, 100Ω Pt. 2-, 3-, or 4-wire
IT03. . . RTD, 100Ω Pt. 2/3/4-wire (-200 to $800^{\circ} \mathrm{C}$)
IT04. . . RTD, 100Ω Pt. 2/3/4-wire (-200 to 1470°)
IT05. . . RTD, 100 Pt. 2/3/4-wire (-199.9 to 199.9 ${ }^{\circ}$ F)
IT12. . . RTD, 120Ω Nickel 2/3/4-wire
IT13. . . RTD, 10Ω Copper 2/3/4-wire
IT14. . . RTD, 100Ω Pt. 2/3/4-wire (-199.9 to $199.9^{\circ} \mathrm{C}$).
ITD1 . . Triple DC Volts, 2V DC
ITD2 . Triple DC-Millivolts, 50 mV DC(100.00)
ITP1 . . Triple Process Loop,4-20mA (0-100.00)
ITT1. . . Triple Thermocouple
ITT2. . Triple RTD Input, 2-wire, 100Ω Pt
ITT3. . . Triple Input, Dual Thermocouple J/K/R/STT/B/N and DCV 2 V
ITT4. . . Triple Input. Dual Thermocouple J/K/R/S/T/B/N and 4 to 20 mA
ITT5. . . Triple Input. Dual Thermocouple J/K/R/S/T/B/N and DC MV
ITT6. . . Triple Input. Thermocouple J/K/R/S/T/B/N and Dual DC MV
ITT7. . . Triple Input. Thermocouple $\mathrm{J} / \mathrm{K} / \mathrm{R} / \mathrm{S} / \mathrm{T} / \mathrm{B} / \mathrm{N}$ and Dual DC Volts
ITT8. . . Triple Input. Thermocouple J/K/R/S/T/B/N and Dual 4-20mA
ITT9 . . Triple Input. Thermocouple J/K/R/STT/B/N and DC Volt and DC MV
ITTA . . . Triple Input. Thermocouple J/K/R/S/T/B/N and 4-20mA and DC MV.
ITTB. . . Triple Input. Thermocouple J/K/R/S/T/B/N and 4-20mA and DC Volt.
ITTC . .Triple RTD Input, 4 -Wire, 100Ω Pt
ITTE. . Triple - RTD / RTD / Frequency
ITTF. . Triple Input, Thermocouple / 4-20mA / Frequency
ITTG . .Triple Input, Thermocouple / V / Frequency
IW01 . .Single Phase Power (Watts, V, A, Hz, PF, Whr) 300V/1A, 600V/1A
IW02 . . Single Phase Power (Watts, V, A, Hz, PF, Whr) 300V/5A, 600V/5A
IW03 . . DC-Watts, 200V DC/50mV DC from Shunt (0-100.00)
।*Optimized for 50 Hz rejection. **Optimized for 60 Hz rejection.

- ANALOG OUTPUT

AIC . . Isolated 16 Bit Current Output, 4-20mA
AIV. . Isolated 16 Bit Voltage Output, 0-10VDC.
ADC . . Isolated 16 Bit Current Output, Dual 4-20mA
ADV . . Isolated 16 Bit Voltage Output, Dual 0-10VDC

Order Code Suffix
Description
US\$ List
S5 Isolated ModBus Protocol RS232 (Requires Cables, See Accessories)*
S6 Isolated ModBus Protocol RS485 (Requires Cables, See Accessories)*

Ethernet

S8 ... Ethernet Output includes a special Output Carrier Board that accepts analog outputs and relay output modules

S9. . . . ModBus Ethernet Outout ,includes a special Output Carrier Board that accepts analog outputs and relay output modules

* RELAY OUTPUT MODULES

*|f a meter is ordered with a Relay Output Module, but without Analog or Serial Output, an Output Module Carrier Board for $\$ 8$ should be automatically added to the order.

OR11 One 9 Amp Form C Relay, Isolated.
OR15 One 9 Amp Form C and Two 4 Amps Form A Relays
OR16......... One 9 Amp Form C and One 4 Amp Form A Relays
OR12 Two 9 Amp Form C Relays, Isolated
OR14............ Two 9 Amp Form C and Two 4 Amps Form A Rëlays
OR23......... Two 9 Amp Form C and One 4 Amp Form A Relay, Isolated
OR25......... One 9A Form C and Two 4A Form A Relays, Isolated
OR31 One 4 Amp Form A Relay, Isolated.
OR32Two 4 Amp Form A Relays, Isolated
OR33Three 4 Amp Form A Relays, Isolated.
OR34 $\ldots \ldots$........... 4 Amp Form A Relays, Isolated.
OR45....... Five 4 Amp Form A Relays, common in groups of three
OR46 Six 4 Amp Form A Relays, common in groups of three

Solid State Relay (SSR) Output Modules DC Only

OR51
OR52.
OR53
OR54
One 400 V DC Solid State Relay (SSR) 210 mA Three 400 DC solid state Relays (SSR) 210 mA

Open Collector / TLL / 5V DC Outputs to Drive External SSRs or Logic Input Devices OR71......... Six 5V DC 50 mA outputs.
OR72
Six open collector outputs.

Opto Isolated I/O Modules for Connecting to External Breakout Box
 OR81........ Six Outputs \& Six Inputs (Macro option Only). OR82
 Data Acquisition Module with Removable Flash Card Mem OR91 Module with 2G SD Card Memory

SPECIAL OPTIONS AND AGGESSORIES

Part Number Description

US\$ List

, SPECIAL OPTIONS

Output Module Carrier Boards

*One carrier board must be ordered with any meter that includes any one or more of the following options: Analog Output, Serial Output and/or Relay Output Modules. The exception is when the Ethernet option is ordered, as it includes a special Output Carrier Board that accepts analog output options and relay output modules. SA-TI/CB.

Output Module Carrier Board, TI series

Range Change and Custom Scaling

Customer must specify the input signal range or digital span and the desired display range, or output signal range. Multiple inputs, outputs or multiple displays require a separate range change or custom scaling part \# and a specified channel for each input, output or display.
Range Change and calibration to another header selectable standard range.
CR-CHANGE . . Range Change from Standard Range shown in BOLD type
Display Custom Scaling within any header selectable input range of module or a combination of module and the software scaling capability of the meter CS-4.5/5/6 Custom display scaling within standard ranges.

Output Custom Scaling within standard ranges of analog output. COA-4.5/5/6. . . Custom scaling of analog output.

- SERIAL OUTPUT PC Based configuration Utility software is available for free download from www.texmate.com.
S1.... USB Communication
S2. Isolated ASCII Code RS-232 (Requires Cable, See Accessories)*
S3USB Communication - MODBUS.
S4 Isolated ASCII Code RS-485 (Requires Cables, See Accessories)*

Tiger TI-500 Series Ordering Info

Custom Selectable Range Installation or Modification

CSR-SETUP . . NRC to set-up custom selectable range.
CSR-INSTL . . . Factory installation - custom configuration, specify
serial \# CSR-.

Custom Special Scaling Beyond the Standard Range

CSS-SETUP . . NRC to set-up custom special scaling
CSS-56/INSTL. Installation - for 4.5, 5.0 and 6.0 meters, specify serial \# CSS-

Custom Output - Relays Installed in Non-Standard Locations
COR-SETUP . . NRC to set-up Relays in non-standard locations
COR-INSTL. . . Installation - Relays in non-standard locations, specify
serial \# COR-
Custom Configuration of programmable functions, codes, settings, linearization tables and macro programs.
CCI-SETUP . . . NRC to set-up custom configuration file and issue serial \#
CCI-INSTL . . . Factory installation - custom configuration, specify serial \# CCI-
CLT-SETUP. . . NRC to set-up linearization tables (per 32 points)
CLT-INSTL . . . Factory installation - linearization tables, specify serial \# CLT- .
CMP-SETUP . . NRC to set-up ordering of a macro programming
(does not include programming of macro code).
CMP-INSTL. . . Factory installation - macro program, specify serial \# CMP-.

- ACCESSORIES

Cables/Serial Communications

OM-CABLE232. RS232: DB9 female to RJ6 phone plug adapter plus 6 ft RJ6 cable OM-CABLE485. RS485: DB9 female to RJ6 phone plug adapter plus 6 ft RJ6 cable . 91-USB/CBL . . USB Cable

Connectors

93-PLUG2P-DP. . Extra Screw Terminal Conn., 2 Pin Power Plug .
93-PLUG2P-DR . Extra Screw Terminal Conn., 2 Pin Plug.
93-PLUG3P-DR . Extra Screw Terminal Conn., 3 Pin Plug.
93-PLUG4P-DR . Extra Screw Terminal Conn., 4 Pin Plug.
93-PLUG5P-DR . Extra Screw Terminal Conn., 5 Pin Plug
93-PLUG6P-DR . Extra Screw Terminal Conn., 6 Pin Plug

Part Numbers: 93-PLUG2P-DS.... 2 pins 93-PLUG3P-DS..... 3 pin $93-P L U G 4 P-D S . . .4$ pins

93-PLUG2P-DS. . Extra Screw Terminal Conn., straight-thru 2 Pin Plug .
93-PLUG3P-DS. . Extra Screw Terminal Conn., straight-thru 3 Pin Plug.
93-PLUG4P-DS. . Extra Screw Terminal Conn., straight-thru 4 Pin Plug .

93-PLUG2PS ... Extra Screw Terminal Conn., 2 Pin Plug, 3.5 mm 93-PLUG3PS . . . Extra Screw Terminal Conn., 3 Pin Plug, 3.5 mm 93-PLUG5PS ... Extra Screw Terminal Conn., 5 Pin Plug, 3.5 mm 93-PLUG8PS ... Extra Screw Terminal Conn., 8 Pin Plug, 3.5mm

USB to RS232 Converter

CV-USB/232
USB to DB9 RS232 Converter

CN-DB/9
80-MOD/PLG
CN-6P6C/T
80-RJ/TERM
.RJ6F to DB9F Convertor
. 6 ft Cable, 6 Pin to 6 Pin RJ6 Plug.
CN-DB9F/25M
6 Pin Terminator Plug for RS485 . G 485
CN-DB9F/25M . .DB9F to DB25M Convertor

External Power Supply

PS-2405 24 VDC Regulated Power Supply, 0.5A Output.
PS-520 5VDC Regulated Power Supply, 2A Output

WARRANTY

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of the products which shall, within the applicable period after shipment, be returned to Texmate's facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to misuse, negligence, or accident. In no case shall Texmate's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has been either repaired or replaced by Texmate.

OP-TERMBLK26

OM-IDC16/3

External DIN Rail Mounting Breakout Box
OP-IDC16/3 16 Pin IDC Cable - 3 Feet (using ISS7/8 Input Modules only)
OP-IDC26/3 26 Pin IDC Cable - 3' (using OR81/82 Output Modules only)
OP-RIB16/1. 16 Pin Ribbon Cable - 1' (using ISS7/8 Input Modules only). OP-RIB26/1. 26 Pin Ribbon Cable - 1' (using OR81/82 Output Modules only)
OP-TERMBLK 16. 16 Pin Din Rail Terminal Block (using ISS7/8 IMs only).
OP-TERMBLK26. 26 Pin Din Rail Terminal Block (using OR81/82 OMs only)

$\overline{\text { 7/EXMATE }} \boldsymbol{I N C}$

450 State Place • Escondido, CA 92029
Tel: 1-760-598-9899 • USA 1-800-839-6283 • That's 1-800-TEXMATE
Tech Support: 1-760-598-9899
Fax: 1-760-598-9828
Email: orders@texmate.com

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY WHETHER OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR OTHERWISE is made beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate. Users shall determine the suitability of the product for the intended application before using, and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In no event shall Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.
Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time.

For product details visit www.texmate.com
 Local Distributor Address

[^0]: Level 3 uses all Level 1 and Level 2 functions combined with reset and trigger functions to provide an extremely powerful advanced mode.
 Level 3 enables you to program all setpoints individually for operations normally requiring sophisticated controllers.

