

Now available in Texmate's family of intelligent load cell input modules is the ISSC 50 Hz and the ISSD 60 Hz input module. With additional dual status inputs, standard weighing tasks can now utilize external control signals. When combined with the Tiger 320 Series controller, a versatile and interactive control system is now possible. For example, a continuous belt weigher with an encoder speed sensor.

Dual Status Inputs

Input Module Order Code Suffix

ISSC (50 Hz Rejection)

ISSD (60 Hz Rejection)

D1 and D2	Configured as frequency inputs
	on CH1 & CH2 respectively.
Excitation Voltage	+24 V to power external sensors.
Ŭ	Voltage transitions 6 to 24 V.
Inputs	Open-collector configuration available
	(10 K pull-up resistors.)
Load Cell	On CH3 / CH4
Excitation	+5 V DC, 130 mA maximum.
Input Range	Software selectable 1 mV/V to 20 mV/V.
Input Sensitivity	0.08 μV/count maximum.
Zero Drift	± 40 nV/°C of full scale maximum.
Span Drift	± 5 ppm/°C of full scale maximum.
Non-linearity	± 0.003% of full scale maximum.
Input Noise	160 nV pp typical at 1 Hz output rate.
Signal Processing Rate	50 Hz maximum, 1 Hz minimum.
	Software Module Features
Dual Status Inputs	
Frequency Ranges	D1 (CH1), choice of 7 ranges. (0.01 Hz to 655.35 kHz).
	D2 (CH2), choice of 4 ranges. (0.01 Hz to 500 kHz).
Load cell	
Dual Output Rates	Rapid and average response outputs.
Peak & Valley Outputs	Monitoring over and undershoots.
Capture Output	Hardwire signal capture.
Rate of Change Output	Useful for fine tuning reaction times.
Line Frequency Rejection	50/60 Hz selectable.
Some Releva	Int Tiger 320 Series Operating System Features
	Auto-zero maintenance.
	Set TARE, reset TARE.
	Setpoint timer functions.
	Setpoint register reset and trigger functions.

Hardware Module Specifications

LOAD-CELL PRESSURE

On-demand calibration.

Programming Quick Start Guide

Connector Pinouts

ISSC / ISSD input module showing 6-wire load cell configuration and two status inputs connected to limit switches.

Note:

Both status excitation headers are in the ON position to provide voltage transition from +24 V to 0 V on switch closure. Load cell header selected for 6-wire load cell.

Table 1	ISSC / ISSD 11-pin I/O Connector		
Pin	Description	Function	
1	-Sense	Bridge – sense volts	
2	+EXC	Bridge + volts excitation	
3	+Sense	Bridge + sense volts	
4	+Signal	Bridge + signal output	
5	–Signal	Bridge – signal output	
6	–EXC	Bridge – volt excitation	
7	Shield	Cable shield (+2.5 volt)	
8	+24 V	Not connected	
9	D1	Status input D1 (CH1)	
10	D2	Status input D2 (CH2)	
11	GND	Common ground	

Figure 1 – ISSC / ISSD Configured for 6-wire Load Cell and Two Status Inputs

Status Excitation Headers D1 & D2.

ISSC / ISSD input module showing 4-wire load cell configuration and one status input connected to a proximity switch.

Status input D1 is the signal from an open collector NPN transistor output in a proximity detector. Status excitation header D2 must be in the ON position for the transistor to provide +24 V to GND voltage transitions.

D2 is not connected.

Table 1	: ISSC / ISSD	11-pin I/O Connector
Pin	Description	Function
1	–Sense	Not connected
2	+EXC	Bridge + volts excitation
3	+Sense	Bridge + sense volts
4	Input High	Bridge + signal output
5	Input Low	Bridge – signal output
6	–EXC	Bridge – volt excitation
7	Shield	Cable shield (+2.5 volt)
8	+ 24 V	+ 24 V excitation
9	D1	Status input D1 (CH1)
10	D2	Not connected
11	GND	Common ground

Figure 2 – ISSC / ISSD Configured for 4-wire Load Cell and One Status Input

Technical Description

The load cell input signal is processed in the input module's 16-bit A/D converter and digital signal processor from where it can be fed to either channel 3 (CH3) or channel 4 (CH4) or both. Status input D1 is internally assigned to channel 1 (CH1) and status input D2 is internally assigned to channel 2 (CH2).

CH1 is configured for frequency measurement for D1 in Code 2. CH2 is configured for frequency measurement for D2 in Code 4. Selecting the load cell output for CH3 is configured in Code 5 and for CH4 in Code 6.

The line frequency rejection setting, sensor input range in mV/V, and the output rate are all selected in the smart register 1 (SMT1) menu in Code 2.

Smart Setup Registers

The Tiger meter uses three smart setup registers to configure all smart input modules. ISSC / ISSD requires only **smart register 1** (SMT1) to be configured. See Figure 4.

SMT1 configures the load cell input signal for line frequency rejection, input signal range in mV/V, and output rate. SMT1 produces the following six output registers from the load cell input:

- Averaged signal.
- Rapid response signal*.
- Peak signal*.
- Valley signal*.
- Capture signal**.
- Rate-of-change signal.

Note:

- * Signal output at the A/D sampling rate.
- ** Hardware initiated from meter CAPTURE pin.

One of these registers can be transferred to Channel 3 (CH3) via Code 2, the same or another register to CH4 via Code 6.

Load Cell Input Signal	CODE 2 Enter Code 2. Select smart register 1 setup [X77].	SMART REGISTER 1 SETUP SMT1 allows you to enter the smart register 1 setup and select for the load cell sensor: Line Frequency. Sensor Input. Output Rate.		OUTPUT REGISTER MAP The output register map allows you to choose a selection of processed output sig- nals from the load cell input to either CH1 or CH2.	-	— СН3 — СН4
		SMART REGISTER 2 SETUP Not required. SMART REGISTER 3 SETUP Not required.]]]			

Figure 4 – ISSC / ISSD Smart Setup Register Operational Flow Diagram

The following programming procedures cover all the steps required to configure smart input module ISSC/ISSD:

Steps 1 to 7:	Code 2 - SMT1 -	1) Line frequency rejection.
		2) Signal range in mV/V.
		3) Output rate.
Steps 8 to 9:	Code 2 – CH1 –	Frequency range for status input D1.
Steps 10 to 12:	Code 4 – CH2 –	Frequency range for status input D2.
Steps 13 to 14:	Code 5 – CH3 –	Output register for load cell input.
Steps 15 to 16:	Code 6 – CH4 –	Output register for load cell input.

SMT1 Setup

Enter Code 2 and then enter SMT1 to configure line frequency rejection, signal range, and output rate settings.

This setting enters the smart register 1 code setup menu.	FIRST DIGIT TIGER PROCESSING RAT 0 10 Hz 1 10 Hz 2 100 Hz 3 100 Hz	E SECOND DIGIT E MEASUREMENT T/ 0 Voltage, Current 1 TC (3rd digit selects typ 2 RTD 3-wire (3rd digit s of RTD) 3 RTD 2- or 4-wire (3rd or	T THIRD DIGIT ASK OUTPUT REGISTER MA 0 Average Signal pe of TC) 1 Rapid Response Signal* 2 Peak Signal* 3 3 Valley Signal* 4
Not	e the output registers	type of RTD) 4 Frequency 5 Period 6 Counter 7 Smart Input Module in the 3rd digit Not	5 Rate of Change Signal 6 - 7 Smart input module reg code setup
the small	specific to the ISSC / I These registers vary f art input module.	SSD input mod- or each different	Signal output at the A/D sampling rate. * Hardware initiated from meter CAPTURE
Press the P button to enter SMT1.			
SITIL IIII This menu provides settings unique to smart register 1 of input module ISSC/ISSD. 1 - 2 50 3 -	FIRST DIGIT NE FREQUENCY SELECT Hz rejection Hz rejection	SECOND DIGIT SENSOR INPUT mV/V 0 1 mV/V 1 2 mV/V 2 3 mV/V 3 20 mV/V	OUTPUT RATE 0 1 Hz average, 50/60 Hz rapid response 1 10 Hz average, 50/60 Hz rapid response 2 - 3 50/60 Hz rapid response
		4 - 5 - 6 - 7 -	4 - 5 - 6 - 7 -
Using the 主 🛡 buttons, select:			
1st Digit: 50 Hz line frequency rejection for 50 rejection for 60 Hz power supply area	Hz power supply areas, as.	or 60 Hz line frequency	
2nd Digit: The sensor input range.			
3rd Digit: The output rate.			
Press the P button. The display returns to [Cod	_2] [X77]. [od_2	ХТТ	

Configure the required channel for each input signal type

Status Input D1: Set up CH1 in Code 2. Status Input D2: Set up CH2 in Code 4. Load Cell Input: Set up CH3 in Code 5 or CH4 in Code 6.

Status Input D1

Enter Code 2 and select the frequency range for CH1.

Press the **P** and **+** buttons at the same time again to re-enter the main 8 programming mode, then press the P button three times to enter Code 2.

Set Code 2 to [X4X] to configure status input D1 on CH1.

1st Digit: Not relevant digital input D1.

2nd Digit: Select 4 to enter the frequency range menu for digital input D1. 3rd Digit: Select the required frequency range setting for digital input D1.

Status Input D2

Enter Code 4 and select the digital input for CH2.

Press the **P** button twice to enter Code 4.

Set Code 4 to [3X0] to configure status input D2 on CH2. 1st Digit: Select 3 to enter the second digital input menu.

2nd Digit: Select the frequency range for digital input D2.

3rd Digit: Select 0 to apply No user defined linearization on CH2.

Load Cell Input

The load cell input can be selected for CH3 via Code 5 or CH4 via Code 6.

13 Set Code 5 to [07X] and select the required load cell output register for CH3 in the 3rd digit.

1st Digit: Set to 0 to select Direct Display of Input.

2nd Digit: Select 7 to enter the output register map for the load cell signal.

3rd Digit: Select the required output register setting for the load cell signal.

Press the **P** button to exit Code 5 and enter Code 6.

If a load cell output is required on CH4 set Code 6 to [07X] and select the required load cell output register for CH4 in the 3rd digit.

1st Digit: Set to 0 to select Direct Display of Input.

2nd Digit: Select 7 to enter the output register map for the load cell signal.

3rd Digit: Select the required output register setting for the load cell signal.

Press the P and + buttons at the same time to return to the operational display.

Example Setup Procedure

In our example, a hopper fills boxes travelling along a conveyor belt. A rotary encoder monitors the conveyor speed and a light beam sensor indicates when the box to be filled is in position below the hopper. A load cell under the conveyor weighs the box.

The rotary encoder is connected to status input D1 and assigned to CH1. The light beam sensor is connected to status input D2 and assigned to CH2. The load cell is configured for 3 mV/V input with 50 Hz line frequency rejection. As the boxes are filled relatively quickly, the averaged output rate is set to 10 Hz on CH3.

The frequency output from the encoder is in the 0 to 1 kHz range (360 pulse/revolution). The light sensor has its beam broken at a much slower rate.

Customer Configuration Settings:

		1st Digit	2nd Digit	3rd Digit
	5078			
		1st Digit	2nd Digit	3rd Digit
CH1	Lod_d			
		1st Digit	2nd Digit	3rd Digit
CH2	[od_4	3		0
CH2	Eod_4	3 1st Digit	 2nd Digit	0 3rd Digit
CH2 CH3	Cod_4	3 1st Digit 0	2nd Digit	0 3rd Digit
CH2 CH3	<u>Cod_4</u>	3 1st Digit 0 1st Digit	2nd Digit 7 2nd Digit	0 3rd Digit 3rd Digit
СH2 СH3 СH4	<u>Cod_4</u> Cod_5	3 1st Digit 0 1st Digit 0	2nd Digit 7 2nd Digit 7	0 3rd Digit 3rd Digit

WARRANTY

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of the products which shall, within the applicable period after shipment, be returned to Texmate's facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to misuse, negligence, or accident. In no case shall Texmate's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has been either repaired or replaced by Texmate.

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY WHETHER OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR OTHERWISE is made beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate. Users shall determine the suitability of the product for the intended application before using, and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In on event shall Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.

Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time.

For product details visit www.texmate.com Local Distributor Address

995 Park Center Drive • Vista, CA 92081-8397 Tel: 1-760-598-9899 • USA 1-800-839-6283 • That's 1-800-TEXMATE Fax: 1-760-598-9828 • Email: sales@texmate.com • Web: www.texmate.com Texmate has facilities in Japan, New Zealand, Taiwan, and Thailand. We also have authorized distributors throughout the USA and in 28 other countries.

Copyright © 2004 Texmate Inc. All Rights Reserved.