

LEOPARD FAMILY E469078

Large display option 0.8 " red or green LED

General Features

- External transmitters or signal conditioners can be eliminated by direct connection of the sensor output to more than 38 Plug-in Input Signal Conditioners that include:
- AC/DC Current
- Pressure
- Resistance
- AC/DC Voltage - Process - *Temperature
- Load Cell - Prototype - 4 to 20 mA
*See models DL-40H for higher accuracy digitally linearized thermocouple and RTD
- Optional isolated 16 bit analog output. User or factory scalable to 4 to $20 \mathrm{~mA}, 0$ to 20 mA or 0 to 10 V across any desired
digital span from \pm one count to the full scale range of -1999 to 9999 (12000 counts).
- Auto-sensing AC/DC power supply. For voltages between 85-265 VAC / 95-300 VDC (PS1) or 15-48 V AC / 10-72 V DC (PS2).
- 24 V DC excitation is available to power external transmitters and 5 or 10 V DC excitation is available for resistance bridge type sensors such as Load Cells and Pressure Transducers.
- Standard red or optional green or super bright red 4-digit LED with display range -1999 to 9999 (12000 counts).
- Red or green $0.8^{\prime \prime}$ LED large display option
- Four annunciator LEDs provide front panel alarm status indication for up to four setpoints.
- Two 9 Amp Form C and two 4 Amp Form A relays, or optionally four 4 Amp Form A relays are available.
- Automatic intelligent averaging smooths noisy signals, while providing a fast display response to real level changes.
- UL Listed

Software Features

- Three-button programming from the front panel (UP, DOWN and PROGRAM buttons).
- Three front panel selectable ranges.
- Front panel selectable four-level brightness control of digital display, and setpoint LEDs.
- Four programmable setpoints.
- Relay activation can be selected to occur above (HI) or below (LO) each setpoint.
- Hysteresis setting for all four setpoints. Delay on make and delay on break for SP1 and SP2.
- Peak and Valley. View and Reset.

DL-40

Leopard Panel Meter 4 Digit 0.56" or 0.8' LEDs in a 1/8 DIN CASE

An economically smart programmable meter relay with isolated 4 to 20 mA retransmission or control loop output capability for measurement and control applications in a $96 \times 48 \mathrm{~mm}$ case.

Input Module Compatibility

LEOPARD FAMILY: More than 38 different Plug-in I-Series Input Signal Conditioners are approved for Texmate's Leopard Family of meters.

See www.texmate.com for an up to date listing.
LEOPARD

Specifications

Input Specs:..............Depends on Input signal conditioner A/D Converter: 14 bit single slope
Accuracy: \pm (0.05% of reading +2 counts)
Temp. Coeff.: 100 ppm/ ${ }^{\circ} \mathrm{C}$ (Typical)
Warm up time:........... 2 minutes
Conversion Rate:...... 5 conversions per second (Typical)
Display:....................... 4 digit 0.56" Red LED display (std), 0.56 " or 0.8 " Red, Green or Super Bright Red (optn)
Range -1999 to 9999 counts.
Polarity:Assumed positive. Displays - negative
Decimal Selection:....Front panel button selectable, $X \cdot X \cdot X \cdot X \cdot$
Positive Overrange:..Top segments of digital display flash
Negative Overrange: .Bottom segments of digital display flash
Relay Output:Two 4 Amp Form A relays and two 9 Amp Form C, or 4 Amp form A relays.
Analog Output:Isolated 16 bit user scalable mA or V
AIC (mA out)4-20 mA @ 0 to 500Ω max loop resistance
AIV (volts out) 0-10 V DC @ 500Ω or higher resistance
Power Supply:...........AC/DC Auto sensing wide range supply
PS1 (std) $85-265$ VAC $50-400 \mathrm{~Hz}$ / 95-300 VDC @ 3W
PS215-48 VAC 50-400HZ / 10-72 VDC @ 2.5W
Operating Temp.: 0 to $50^{\circ} \mathrm{C}$
Storage Temp:........... $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Relative Humidity:95\% (non condensing)
Case Dimensions:1/8 DIN, Bezel: 96x48 mm (3.78"x1.89") Depth behind bezel: 117 mm (4.61") Plus 11.8 mm ($0.47^{\prime \prime}$) for Right-angled connectors, or plus 20 mm (0.79 ") for Straight-thru connector.
Weight:.......................6.5 oz., 8.5 oz when packed

Index			
Case Dimensions 14	Digital Calibration Procedure. 4	Input Module Comp. Glossary . . 13	Setpoint Setting \& Relay
Component Layout 8-9	Digital Span Selection for	Input Module Compatibility 1	Configuration Mode 6
Connector Pinouts 7-8	Analog Range Output 5	I-Series Input Signal	Software Features 1
Controls and Indicators 2	Functional Diagram 7	Conditioning Modules 10-12	Software Logic Tree. 3
Decimal Point \& Brightness	General Features. 1	Installation Guidelines 12	Specifications. 1
Selection. 5	Glossary of Prog. Symbols 2	Lens Cover. 15	Two Point Analog Output
Digital Calibration Mode 4	Input Module Analog Cal. . . . 13-14	Metal Surround Case 15	Range Setting and Calibration . . . 5

Front Panel Buttons

Program Button

The button is used to move from one program step to the next. When pressed at the same time as the $\boldsymbol{\square}$ button, it initiates the calibration mode. When pressed at the same time as the \square button, it initiates the setpoint setting mode.

Up Button

When in the operational display, pressing the $\boldsymbol{\rightarrow}$ button alone, allows you to view and reset the Peak and Valley (Highest and Lowest Readings.)
When in the calibration mode or the setpoint setting mode the (1) button is used to increase the value of the displayed parameter.

Down Button

When in the operational display, pressing the \ddagger button alone, allows you to view, but not change, the setting of setpoint $1,2,3 \& 4$.
When in the calibration mode or the setpoint setting mode the
\square button is used to decrease the value of the displayed parameter.

Glossary of Programming Symbols

To explain software programming procedures, logic diagrams are used to visually assist in following the programming steps. The fol-lowing symbols are used to represent various functions and associated display elements of the meter:

Symbol

Explanation

This symbol represents the OPERATIONAL DISPLAY.

This is the PROGRAM button.
This is the UP button.
This is the DOWN button.

When a button is shown, press and release it to go onto the next step in the direction indicated by the arrow. When two or more buttons are shown, each with an arrow, this indicates that there is a number of programming choices.

When two buttons are shown side by side
 and enclosed by a dotted line, they must be pressed at the same time then released to go onto the next programming step.

If the display is shown with XXXX it means the value displayed will be the previously set value. When a number is shown it indicates the initial factory default setting or a specific "example number".

[LhLh]
[hLhh]
[LLLh]

When two displays are shown together with bursts, this indicates that the display is toggling (flashing) between the name of the function and the value.

Text or numbers shown between square brackets in a procedure indicate the programming code name of the function or the value displayed on the meter display.

When the \dagger and \boxplus buttons are shown together, the display value can be increased by pressing and releasing the \rightarrow button or decreased by pressing and releasing the - button.

When the $\boldsymbol{\square}$ and buttons are shown with two displays, either display can be selected by pressing and releasing the \uparrow or - buttons.

When there are more than two display selections they are shown in brackets below the first display and are also selectable by pressing and releasing the $\boldsymbol{\square}$ or \square buttons.

A dotted box indicates these functions are omitted or bypassed when the related hardware is not present

The DL-40 is an intelligent meter with a hierarchical software structure designed for easy programming and operation, as shown below in the software logic tree.

After the meter has been powered up, the four digits light up for three seconds and then settle to the operational display indicating the input signal.
 canceled and previous
settings are retained

15 Second Program Timeout

The meter has a 15 second program timeout. If no buttons are pressed for 15 seconds, at any stage of the programming sequence the meter will exit the programming mode and return to the operational display. Any program changes that were made prior to pressing the \square button in the preceding step will not be saved.

SP1)

-

Delay-on-Break

DIGITAL SPAN
ECTION FOR ANALOG
RANGE OUTPUT
See Page 5

Delay-on-Break
-Break
(dob)

Digital Calibration Mode

This mode enables the meter to be calibrated with an automatic scale factor calculation, by applying a high input signal, entering the desired reading for that signal, then applying a zero or low input signal, and then entering the desired 0 or low reading. The meter then automatically calculates and programs in the requisite scale factor, within the following parameters.

1. Positive and negative signals may be applied, but the difference between the high and the low signal inputs must be at least 1000 counts or Err will be indicated.
2. Positive and Negative values for the desired reading can be entered, but the scale factor created can not exceed the Digital Display Span capability of the meter which is 12,000 counts between -1999 to 9999.
3. The internal Signal Span is limited to 3 V DC between -1 V DC to +2 V DC. Any outputs from an Input Signal Conditioning module that exceed these limits will cause the meter to indicate overrange regardless of the Digital Display Span scaled.

Note: Most input signal conditioners have provisions for analog calibration and scaling. If the meter's digital scale factor is set to read zero with a zero input (shorted input), and to read 1000 with a 1.000 V input, any pre-calibrated signal conditioner with an output that does not exceed -1 V to +2 V , will read correctly in the meter without any further calibration.

Digital Callbration Procedure

STEP A Enter the Calibration Mode

1) Press the \square and \square buttons at the same time. Display toggles between [cAL] and [oFF].
2) Press the \square or \boxtimes button. Display changes from [oFF] to [on].
3) Press the \square button. Display toggles between [ZEro] and the previous zero setting.

STEP B Select Between Two Point Digital Calibration of Input Signal and Two Point Analog Output

Note: If the analog output option is not present, Step B is skipped and the program goes directly from Step A to Step C.

1) Press the \uparrow or \ddagger button to select the display toggling from [cAL] to $[i P]$ input calibration.
2) Press the button. Display toggles between [ZEro] and the previous zero setting.

STEP C Set the Meter's Low Input Signal Reading on the Digital Display

1) Apply a zero or low signal to the meter.
(Positive or negative values are allowed)
2) Using the $\boldsymbol{\square}$ and buttons, adjust the meter display to the desired reading for the applied low input signal.
3) Press the \rrbracket button. Display toggles between [SPAn] and the previous span setting.

STEP D Set the Meter's High Input Signal Reading on the Digital Display

1) Apply a high input signal to the meter.
2) Using the $\boldsymbol{\square}$ and buttons, adjust the digital display to the desired reading for the applied high input signal.
3) Press the button.

The Digital Calibration Procedure Mode is Now Complete.

If the digital calibration was successfully completed, the menu branches to the DISPLAY FUNCTION CONFIGURATION MODE, (see page 7) and the display flashes [dP] and the previous setting.

ERROR Indicates Unsuccessful Calibration

If the calibration was unsuccessful, the display indicates [Err], the new calibration settings just entered will not take effect and the previously stored setting will remain.
The three most likely causes of an error during calibration are:

1) The full scale and zero signals were too similar. The full scale signal must be at least 1000 counts greater than the zero or low input signal (positive and negative values are allowed).
2) The scaling requirement exceeded the capability of the meter (-1999 to 9999).
3) No input signal present, or incorrect connections.

STEP A Enter the Calibration Mode

1) Press the \ddagger and buttons at the same time. Display toggles between [cAL] and [oFF].
2) Press the \square or \downarrow button. Display changes from [oFF] to [on].
3) Press the button. Display toggles between [cAL] and [out] input calibration.

Note: If at this point the display skips directly to toggle between [SPAn] and the previous [SPAn], the software is detecting that the optional analog output hardware is NOT installed.

STEP B Enter the Analog [oUT] Output Mode

1) Press the button. Display toggles between [cLo] and an internal scale factor.

STEP C Set or Calibrate the [cLo] Low Analog Output Range

1) Select the voltage or current loop output header position on the output module. (See Component Layout on page 9).
2) Connect a multimeter to pins 16 and 17 on the output module. (See Rear Panel Pinouts on page 8). Using the \uparrow and \square buttons, adjust the analog output to the desired low value as shown on the multimeter display. cLo may be adjusted to any value from -0.3 mA to 17 mA (mA output selected) or from -0.6 V to 8 V (volt output selected)
3) Press the button. Display toggles between [chi] and an internal scale factor.

STEP D Set or Calibrate the [chi] High Analog Output Range

1) Using the $\boldsymbol{\square}$ and buttons, adjust the analog output to the desired high value as shown on the multimeter display. chi may be adjusted to any value
from 17 mA to 21 mA (mA output selected) or from 8 V to 10.3 V (volt output selected)
2) Press the button. The display exits the calibration mode and returns to the operational display.

Note: Having established the Low and High range of the analog output, the digital span can now be selected which will set the two digital points between which the analog output will occur. (See Digital Span Selection below).

Decimal Point and Brightness Selection

Enter the Decimal Point and Brightness Mode Through the Sub Menu [CAL] [oFF]

1) Press the \mathbb{P} and buttons at the same time. Display toggles between [cAL] and [oFF].
2) Press the button. Display shows previous [dp] selection.

STEP E Set the Decimal Point

1) Using the $\boldsymbol{\square}$ and \ddagger, adjust the display to the desired decimal point setting.
2) Press the button. Display toggles between $[\mathrm{Br}]$ and the previous $[\mathrm{Br}]$ setting.

STEP F Set the Display Brightness

1) Using the $\boldsymbol{\square}$ and \ddagger buttons, adjust the display to the desired brightness setting (4 is the brightest setting).
2) Press the button. Display brightness changes to new setting and display toggles between [Anhi] and the previous [Anhi] setting.

Digital Span Selection for Analog Range Output

STEP G Setting the Digital Span Point for Analog High Output

1) Using the \dagger and \ddagger buttons, adjust the display to the desired digital value which sets the point at which the selected analog high output range will occur.
2) Press the button. Display toggles between [AnLo] and previous [AnLo] setting.

STEP H Setting the Digital Span Point for Analog Low Output

1) Using the \llbracket and \ddagger buttons, adjust the display to the desired digital value which sets the point at which the selected analog low output range will occur.
2) Press the button. The display exits the calibration mode and returns to the operational display.

Note: Any two digital scale points from -1999 to 9999 can be selected. The digital scale points for analog high and analog low can be reversed for reversed $20-4 \mathrm{~mA}$ output. The span of the digital scale can be as small as two counts however small spans cause the 16 bit D to A to increment in stair case steps.

The following programming steps are required to enter the setpoint values and configure the relay functions in a meter with four relays using four setpoints. Generally if less than four relays are installed the software auto detects missing relays and deletes reference to them from the menu. In some cases setpoints without relays are operational for display only purposes.

STEP A Enter the Setpoint Mode

1) Press the \square and buttons at the same time.

Display toggles between [SP1] and the previous [SP1] setting.
STEP B Set Setpoint 1 (SP1)

1) Using the \square and \square buttons, adjust the display to the desired SP1 value.
2) Press the button. Display toggles between [doM] and the previous [doM] setting.

STEP C Set the SP1 Delay-on-Make (doM) Delay Time Setting

1) Using the \square and \square buttons, adjust the display to the desired [doM] value (0 to 9999 seconds). The reading must continuously remain in an alarm condition until this delay time has elapsed before the relay will make contact (energize).
2) Press the button. Display toggles between [dob] and the previous [dob] setting.

STEP D Set the SP1 Delay-on-Break (dob) Delay Time Setting

1) Using the \dagger and \ddagger buttons, adjust the display to the desired [dob] value (0 to 9999 seconds). The reading must continuously remain in an non-alarm condition until this delay time has elapsed before the relay will break contact (de-energize).
2) Press the button. Display toggles between [hYSt] and the previous [hYSt] setting.

STEP E Set the Hysteresis Setting for Setpoint 1

1) Using the \ddagger and \ddagger buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the button. Display toggles between [SP2] and the previous [SP2] setting. NOTE: Half of the Hysteresis value selected is applied above and below the setpoint.
NOTE: Steps F, G, H and J have functionally the same procedure as steps B, C, D, and E shown above.
STEP F Set Setpoint 2 (SP2)
STEP G Set the SP2 Delay-on-Make (doM) Delay Time Setting
STEP H Set the SP2 Delay-on-Break (dob) Delay Time Setting
STEP I Set the Hysteresis Setting for Setpoint 2
3) Using the \dagger and \ddagger buttons, adjust the display to the desired hysteresis [hYSt] value.
4) Press the button. Display toggles between [SP3] and the previous [SP4] setting.

STEP J Set Setpoint 3 (SP3) (No [doM] or [dob])

1) Using the \uparrow and \ddagger buttons, adjust the display to the desired SP3 value.
2) Press the button. Display toggles between [hYSt] and the previous [hYSt] setting.

STEP K Set the Hysteresis Setting for Setpoint 3

1) Using the $\boldsymbol{\square}$ and \square buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the button. Display toggles between [SP4] and the previous [SP4] setting.

STEP L Set Setpoint 4 (SP4) (No [doM] or [dob])

1) Using the \uparrow and \ddagger buttons, adjust the display to the desired SP4 value.
2) Press the button. Display toggles between [hYSt] and 0 .

STEP M Set the Hysteresis Setting for Setpoint 4

1) Using the \pm and \ddagger buttons, adjust the display to the desired hysteresis [hYSt] value.
2) Press the \square button. Display toggles between [rLYS] and the previous relay setting.

STEP N Set Relay Activation mode [rLYS]
(h) High the relay energizes when the setpoint is exceeded. (L) Low the relay energizes below the setpoint. The setpoint is indicated from left to right SP1, SP2, SP3, SP4.

1) Using the \square and \square buttons, adjust the reading on the display to the desired relay settings: [LLLL], [LhLh], [hLhL], [hhhh].

If only 2 relays installed [Lh] [hL] [hh] [LL].
2) Press the \square button.

The meter exits the setpoint mode and returns to the operational display.

The Setpoint Relay programming mode is now complete.

[^0]
Connector Pinouts

Pinout Diagram

The Rear View of the Meter diagram shows the meter with the relay configuration: dual 9 Amp Form C and dual 4 Amp Form A relays. An analog output module is also shown as installed.
The DL-40 uses plug-in type screw terminal connectors for all input and output connections. The power supply connections (pins 14 and 15) have a unique plug and socket outline to prevent cross connection. The main board and input signal conditioner use right-angled connectors as standard. The output module uses straight-thru connectors as standard.

WARNING: AC and DC input signals and power supply voltages can be hazardous. Do Not connect live wires to screw terminal plugs, and do not insert, remove or handle screw terminal plugs with live wires connected.

Auto-sensing AC/DC power supply. For voltages between 85-265 V AC / 95-300 V DC (PS1) or 18-48 V AC / 10-72 V DC (PS2).

Standard plug-in screw terminal connectors provided by Texmate:

Input Signal - Pins 1 to 6

Pins 1 to 6 are reserved for the input signal conditioner. See the data sheet for the selected input signal conditioner.
Relay Output Pins- Pins 8 to 12
Note: If relays for setpoints $1 \& 2$ are installed on the main board, a relay output module is not available (and viseversa).
Pin 8 SP1 NO.
$\begin{array}{ll}\text { Pin } 8 & \text { SP1 NO. Normally Open } 4 \text { Amp Form A. } \\ \text { Pin } 9 & \text { SP1 NO. Nor }\end{array}$
Pin 10 SP2 NO.
Pin 11 SP2 NO. Normally Open 4 Amp Form A.
Pin 12 NO CONNECTION.
AC/DC Power Input- Pins 14 and 15
Auto-sensing AC/DC power supply. For voltages between 85-265 V AC/95-300 V DC (PS1) or 18-48 V AC/10-72 V DC (PS2).
Pin 14 AC/DC Neutral. Neutral power supply line.
Pin 15 AC/DC line. Live power supply line.
Optional Carrier Board Output Pins
Analog Output- Pins 16 and 17
Pins 16 and 17 are the analog output pins on the optional output module. Their pin definitions are:
Pin 16 Positive (+) analog output.
Pin 17 Negative (-) analog output.

Pins 18 to 21 - Rear Panel Function Pins
Pins 18 to 21 provide functions that can be implemented with an external switch. Their pin definitions are:
Pin 18 DIM. By connecting the display dim (DIM) pin to the COMMON pin, the display brightness setting is halved.
Pin 19 COMMON. To activate the LOCK or DIM functions from the rear of the meter, the respective pins have to be connected to the
COMMON pin. This pin is connected to the internal power supply ground.
Pin 20 HOLD. By connecting the HOLD pin to the COMMON pin, the displayed reading is frozen, however, A/D conversions continue. When the HOLD pin is disconnected from the COMMON pin, the correct reading is displayed.
Pin 21 LOCK. By connecting the LOCK pin to the COMMON pin, the meter's programmed parameters can be viewed but not changed.

Pins 22 to 29 - Output Module Pins
Relay Modules with 4 Independent 300V (210mA DC only)

Relay Modules with 2 Non-Isolated 4A Form A Relays, and 2 Non-Isolated 9A Form C Relays

DL Series				
SP2		SP4 SP		
29	$28 \quad 27$	26	423	
Order Code	Options			
	SP2	SP4	SP1	SP3
OR11	-	.	10A	-
OR12	9A	-	9A	-
OR23	9A	4A	9A	-
OR14	9A	4A	9A	4A
OR15		4A	9A	4A
OR16		4A	9A	

Relay Modules with 4 Isolated 5A Form A Relays

Component Layout

Bottom View of Output Module Carrier Board

Many additional input modules are available and others are constantly being developed. Check with your local distributor or www.texmate. com for updated information.
Pre-calibrated I-Series input modules, that have span or zero potentiometers, can be interchanged between any I-Series compatible meter, without recalibration, because all of the analog scaling and reference circuitry is self-contained within the module. Where appropriate, all the standard ranges shown are designed to be header selectable by the user, and Texmate's unique SPAN ADJUST Header facilitates scaling to almost any required engineering unit. See Input Module Component Glossary and Calibration on pages 13 and 14. Also see Two Point Digital Calibration and Digital Calibration on page 4.
Unless otherwise specified Texmate will ship all modules pre-calibrated with factory preselected ranges and/or scalings as shown in BOLD type. Other pre-calibrated standard ranges or custom ranges may be ordered. Factory installed custom scaling and other custom options are also available (see Ordering Information, Special Options on last page).

Symbols Indicate Module Compatibility Within Meter Families

	TIGER Family		
	LEOPARD Family		LEOPARD Family
	LYNX Family	LYNX Family	LYNX Family
ALL	MODELS	SOME MODELS	MODEL SPECIFIC

\angle
WARNING: AC and DC input signals and power supply voltages can be hazardous. Do Not insert, remove or handle modules with live wires connected to any terminal plugs.

IA01: AC Volts Scaled RMS, 200/300V AC

IA02: AC Volts Scaled RMS, $200 \mathrm{mV} / \mathbf{2 V} / 20 \mathrm{~V}$ AC

IA03: AC Milliamps Scaled RMS, 2/20/200mA AC

IA04: AC AC Amps Scaled RMS, 1 Amp AC
IA05: AC AC Amps Scaled RMS, 5 Amp AC

IA06: AC Volts True RMS, 300V AC

IA07: AC Volts True RMS, 200mV/2V/20V AC

IA08: AC Milliamps True RMS, 2/20/200mA AC

IA09: AC Amps True RMS, 1 Amp AC
IA11: AC Amps True RMS, 5 Amp AC

IA10: AC Millivolts, Scaled RMS, 100mV AC

IA12: AC Millivolt RMS Sigma Delta

ID01: DC Volts, 2/20/200V/Custom w/24V DC Exc

ID02: DC Millivolts, 20/50/100/200mV DC w/24V DC Exc

ID03: DC Milliamps, 2/20/200mA DC w/24V DC Exc

ID04: DC Amps, 5A DC
ID09: DC Amps, 1A DC

ID05: DC Volts 2/20/200/Custom V DC with Offset and 24 V Exc.

ID07: DC Milliamps, 2/20/200mA DC with Offset and 24 V Exc

IF02: Line Frequency

IGYZ: Universal Direct Pressure (Absolute or Differential/Gage) See below for ordering code options

Direct Pressure (IGYX, IGYY \& IGYZ) Ordering Code Options

IP01: Process Loop, 4-20mA
IP02: Process Loop, 4-20mA with 24VDC EXC

IP03: Process Input, 1-5V DC with Offset, 24V Exc

IP07: Universal Process Input $2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 2 \mathrm{~mA} / 20 \mathrm{~mA} /$ Custom

IR02: 3 wire Potentiometer $1 \mathrm{~K} \Omega \min (0-F . S$.

IR03: Linear Potentiometer $1 \mathrm{~K} \Omega$ min

IR04: Resistance $2 \mathrm{~K} \Omega$ (Lynx only)
IR05: Resistance $2 \mathrm{~K} \Omega$ (Leopard only)

IS01: Strain Gage 5/10VDC Exc., 20/2mV/V, 4/6-wire
IS02: Pressure/Load Cell

IS04: Pressure/Load Cell Ext Exc., 20/2mV/V, 4/6-wire

IS05: Pressure/Load Cell 20/2mV/V, 5/10V Exc 4-wire

IS06: Pressure/Load Cell Ext Exc., 20/2mV/V, 4-wire

IS07: Pressure/Load Cell Ext Exc. High Impedance, 20/2mV/V, 4/6-wire

Installation Guidelines Installation

1. Install and wire meter per local applicable codes/regulations, the particular application, and good installation practices.
2. Install meter in a location that does not exceed the maximum operating temperature and that provides good air circulation.
3. Separate input/output leads from power lines to protect the meter from external noise. Input/output leads should be routed as far away as possible from contactors, control relays, transformers and other noisy components. Shielding cables for input/output leads is recommended with shield connection to earth ground near the meter preferred.
4. A circuit breaker or disconnect switch is required to disconnect power to the meter. The breaker/switch should be in close proximity to the meter and marked as the disconnecting device for the meter or meter circuit. The circuit breaker or wall switch must be rated for the applied voltage (e.g., 120VAC or 240VAC) and current appropriate for the electrical application (e.g., 15A or 20A).
5. See Case Dimensions section for panel cutout information.
6. See Connector Pinouts section for wiring.

7. Use 28-12 AWG wiring, minimum $90^{\circ} \mathrm{C}(\mathrm{HH})$ temperature rating. Strip wire approximately 0.3 in. (7-8 $\mathrm{mm})$.
8. Recommended torque on all terminal plug screws is $4.5 \mathrm{Ib}-\mathrm{in}(0.51 \mathrm{~N}-\mathrm{m})$.

Input and Output Pins

On most modules Pin 1 is the Signal High input and Pin 3 is the Signal Low input. Typically Pin 2 is used for Excitation Voltage output.

24V DC Output Header

On some modules this header enables a 24 V DC 25mA (max) Excitation/Auxiliary output to be connected to Pin 2.

INPUT RANGE Header

Range values are marked on the PCB. Typically two to four positions are provided, which are selected with either a single or multiple jumper clip. When provided, a custom range position is only functional when the option has been factory installed.

SPAN Potentiometer (Pot)

If provided, the 15 turn SPAN pot is always on the right side (as viewed from the rear of the meter). Typical adjustment is 20% of the input signal range.

SPAN ADJUST Header

This unique five-position header expands the adjustment range of the SPAN pot into five equal 20% steps, across 100% of the input Signal Span. Any input Signal Span can then be precisely scaled down to provide any required Digital Display span from 1,999 counts ${ }_{5}$ to 001 (one count).

Header position	1	2	3	4	5
SPAN Pot \%	20\%	20\%	20\%	20\%	20\%
Signal Span \%	20\%	40\%	60\%	80\%	100\%
Equivalent Circuit					

SPAN RANGE Header

When this header is provided it works in conjunction with the SPAN ADJUST Header by splitting its adjustment range into a Hi and a Lo range. This has the effect of dividing the adjustment range of the SPAN pot into ten equal 10% steps across

Turn Clockwise to
Increase Reading

ZERO Potentiometer (Pot)

If provided, the ZERO pot is always to the left of the SPAN pot (as viewed from the rear of the meter). Typically it enables the input signal to be offset $\pm 5 \%$ of full scale (-100 to +100 counts).

ZERO OFFSET RANGE Header

When provided, this three position header increases the ZERO pot's capability to offset the input signal, to $\pm 25 \%$ of the digital display span. For example a Negative offset enables a 1 to 5 V input to display 0 to full scale. The user can select negative offset, positive offset, or no offset (ZERO pot disabled for two step non-interactive span and offset calibratien) Offset Range Header

ZERO ADJUST Header

When this header is provided, it works in conjunction with the ZERO OFFSET RANGE Header, and expands the ZERO pot's offset capability into five equal negative steps or five equal positive steps. This enables virtually any degree of input signal offset required to display any desired engineering unit of measure.

Zero Offset Range Header

Input Module Analog Calibration

In addition to the analog calibration capabilities that enable many modules to be interchanged between different meters without loss of accuracy the Leopard Family of meters have enhanced Digital Calibration functions. See Page 4

Basic standard range calibration of direct reading modules that utilize either Auto Zero or a ZERO pot, an INPUT RANGE Header and or a SPAN pot.

1 If the module has an INPUT RANGE Header, reposition the jumper clip to select the desired input signal range.
2. Apply a zero input or short the input pins. The display will auto zero, or if the module has a ZERO pot, it should be adjusted until the display reads zero.
3 Apply a known input signal that is at least 20% of the full scale input range and adjust the SPAN pot until the display reads the exact input value. For negative inputs, Leopard Family Meters will display negative overrange at 50% of full scale range.
4 Decimal Points. The selection or positioning of decimal points has no effect on the calibration of the modules

Wide range scaling, in engineering units not requiring offsets, with modules that utilize auto-zero or a ZERO pot, a SPAN RANGE Header and or a SPAN ADJUST Header.

Texmate's unique SPAN ADJUST and SPAN RANGE Headers provide the circuit equivalent of an ultra-precision one megohm 75 or 150 turn potentiometer that can infinitely scale down any Input Signal SPAN to provide any full scale Digital Display Span from 1999 (counts) to 001 (one count).
If the module has an INPUT RANGE Header, and the required full
scale Digital Display Span (counts) is to be larger than the directly measured value of the input Signal Span, then the next lower range on the INPUT RANGE Header should be selected. The resulting over range Signal Span is then scaled down, by selecting the position of the SPAN RANGE Header and or the SPAN ADJUST Header, which will reduce the input Signal Span to a percentage, that the required Digital Display Span can be reached by calibration with the SPAN pot.

Example A: 0 to 10 V to read 0 to 1800 gallons.
Signal Span $=10 \mathrm{~V}$, Digital Display Span $=1800$ counts
1 Select the 2 V INPUT RANGE Header position. This will provide a digital display of 1800 counts with an input of only 1.8 V which is $(1.8 \div 10)=18 \%$ of the examples 10 V Signal Span.
2 To scale down the Signal Span to 18% select the 20% Signal Span position on the SPAN ADJUST Header (position 1) or if the module has a SPAN RANGE Header, select (LO Range) and 20\% Signal Span position on the SPAN ADJUST Header (position 2).
3 Apply a zero input or short the input pins. The display will auto zero, or if the module has a ZERO pot, it should be adjusted until the display reads zero.
4 Apply 10 V and adjust the SPAN pot until the display reads 1800.
Large offset scaling and calibration of process signal inputs with modules that utilize ZERO ADJUST Headers and or ZERO OFFSET RANGE Headers.

Texmate's unique ZERO OFFSET RANGE Header enables the use of a simple two step scaling and calibration procedure for those process signals that require large offsets. This eliminates the back and forth interaction, between zero and span settings, that is often required to calibrate less finely engineered products.

The first step is to set the ZERO OFFSET RANGE Header to the center position (No Offset) and scale down the Input Signal Span to a percentage that will enable calibration with the SPAN pot to reach the required Digital Display Span.
The second step is to set the ZERO ADJUST and or ZERO OFFSET RANGE Header to provide a positive or negative offset of sufficient counts that calibration with the ZERO pot will offset the Digital Display Span to produce the required digital reading.
Example B: 1 to 5 V to read -100 to $1500^{\circ} \mathrm{C}$.
Signal Span $=4 \mathrm{~V}$, Digital Display Span $=1600$ counts

1 If the module has an INPUT RANGE Header the 2 V position should be selected. This will provide a digital display of 1600 counts for an input of 1.6 V which is $(1.6 \div 4)=40 \%$ of the examples 4 V signal span. To scale down the Signal Span to 40% select the 40% Signal Span position on the SPAN ADJUST Header (position 2).
2 If the module is a Process Input 1-5 V DC type, select the (Hi Range) position on the SPAN RANGE Header and the 100\% Signal Span position on the SPAN ADJUST Header (position 5, max increase). This will provide a digital display of 1600 counts for an input of 4 V which is 100% of the examples 4 V Signal Span.
3 Set the ZERO OFFSET RANGE Header to the center position (no offset). Apply 1 V and adjust the SPAN pot until the display reads 400 . A 4V input would then read 1600 counts.
4 Set the ZERO OFFSET RANGE Header to the negative offset position. If the module has a ZERO ADJUST Header select the position that will provide a negative offset of ≈-500 counts. Apply 1 V and adjust the ZERO pot until the display reads -100 . Apply 5 V and check that the display reads 1500.

Example C: 4 to 20 mA to read 00.0 to $+100.0 \%$
Signal Span $=16 \mathrm{~mA}$, Digital Display Span $=1000$ counts.
1 The full scale Signal Span of the Process Input 4-20 mA modules is 0 to 20 mA for a full scale Digital Display Span of 0 to 2000 counts. This will provide a digital display of 1000 counts with an input of only 10 mA which is $(10 \div 16)=62.5 \%$ of the examples 16 mA signal span.
2 To scale down the Signal Span to 62.5% select the (Hi Range) Position on the Span Range Header and the 70\% Signal Span position on the SPAN ADJUST Header (position 2).
3 Set the ZERO OFFSET RANGE Header to the center position (no offset). Apply 4 mA and adjust the SPAN pot until the display reads 250 . A 16 mA input would then read 1000 counts.
4 Set the ZERO OFFSET RANGE Header to the positive offset position. If the module has a ZERO ADJUST Header select the position that will provide a negative offset of ≈-250 counts. Apply 4 mA and adjust the ZERO pot until the display reads 000. Apply 20 mA and check that the display reads 1000 . Select decimal point $\mathrm{XXX} \cdot \mathrm{X}$ to display 00.0 to 100.0.

Case Dimensions

PANEL CUTOUT
Case will mount in standard $1 / 8$ DIN cutouts *

The clear lockable cover is designed to be dust and water proof to NEMA-4X, IP65 standards. The assembly consists of a base and cover with a cam hinge and key-lock fastening mechanism. An O-ring, or neoprene gasket forms a seal between the base and the panel. The cam hinge prevents the cover from closing when opened until pushed closed. The cover has a tapered recess that, when closed, forms a seal with a tapered spigot on the base. A key-lock employs a cam locking device to force the spigot into the recess, ensuring seal integrity. A safety catch keeps the cover closed even when the key is removed, and the keyhole can be used to attach a safety seal clip, preventing unauthorized opening.

Metal Surround Case Option OP-MTL96X48

The meter's plastic case is made from fire retardant polycarbonate. A metal surround case can be ordered to enhance the meter's fire retardant capabilities and also provide shielding against electromagnetic interference (EMI). The metal case slides over the polycarbonate case and is held firmly in place by spring-type non-return clips. The Metal Surround Case must be factory installed on the polycarbonate case and once installed, it cannot be removed in the field.

With the metal case in place, the meter's standard ratchet-type mounting clips can not be used. Instead a pair of screw-type DIN standard mounting clips are provided, which clip into holes on the side of the metal case and tighten against the rear of the panel. A ground tab on the metal case enables the metal case to be easily connected to the panel ground.

DL-40
Add to the basic model number the order code suffix for each standard option required. The last suffix is to indicate how many different special options and or accessories that you may require to be included with this product. *Except when when R1 or R2 relay output is selected, a meter ordered with an analog output or a relay output module requires an Output Module Carrier Board which should be automatically included with the order, with an additional charge of $\$ 7$. (See special Options and Accessories section)
Ordering Example: DL-40-DR-PS1-IA01-AIC-R1-0A2, the 2 OA's are, CR-CHANGE and a OP-N4X/96X48

- BASIC MODEL NUMBER

DL-40......... 96x48, Leopard, 4 Digit.

Standard Options for this Model Number	
Order Code Suffix	Description

- DISPLAY

```
DR. ......Red LED, 0.56 inch high
DB. . . . Super-bright Red LED, 0.56 inch high.
    Green LED, 0.56 inch high
    Large Green LED, 0.8 inch high
    Large Red LED, 0.8 inch high
```

- POWER SUPPLY

PS1... 85-265VAC / 95-300VDC
PS2... 18-48VAC / 10-72VDC

- INPUTT MODULES (Partial List. See www.texmate.com)

Unless otherwise specified Texmate will ship all modules precalibrated with factory preselected ranges and/or scalings as shown in BOLD type

IA01. . AC-Volts Scaled RMS, 200/600V AC
IA02. . AC-Volts Scaled RMS, $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V}$ AC
IA03. . AC-mA Scaled RMS, 2/20/200mA AC
IA04. . AC-Amps Scaled RMS, 0-1 Amp AC (0-100.00
IA05. . AC-Amps Scaled RMS, 0-5 Amp AC (0-100.00)
IA06. . AC-Volts True RMS, 200/600V AC
. AC-Volts True RMS, $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V}$ AC
IA08. . AC-mA True RMS, $2 / 20 / 200 \mathrm{~mA} A C$
IA09. . AC-Amps True RMS, 0-1 Amp AC (0-100.00)
IA10. . AC-Millivolt, Scaled RMS, 100 mV AC
IA11. . AC-Amps True RMS, 0-5 Amp AC (0-100.00)
IA12. . AC-Millivolt, True RMS, $\mathbf{1 0 0 m V}$ AC
ID01 . DC-Volts, $2 / 20 / 200 \mathrm{~V} / \mathrm{Custom} w / 24 \mathrm{~V}$ DC் ExC
ID02 . DC-Millivolt, 20/50/100/200mV DC w/24V DC Exic
ID03 . DC-Milliamp, 2/20/200mA DC w/24V DC Exc
ID04 : DC-Amps, 5A DC
ID05 . DC-Volts 2/20/200/Custom V DC w/Offset and 24 V Exc
ID07 . DC-Milliamp, 2/20/200mA DC w/Offset and 24V Exc
ID09 . DC-Amps, 1A DC
IF02. Line Frequency, $50-500 \mathrm{VAC}, 199.9 \mathrm{~Hz}$, or optional 400 Hz
IGYZ**.Universal Direct Pressure
*View the IG- Ordering Code on page 11 to determine the value for Y \& Z (IGAZ to IGKZ)
IP01. . Process Loop, 4-20mA(0-100.00)
IP02. . Process Loop, 4-20mA(0-100.00) w/24VDC Ex́
IP03. . Process Input, 1-5V DC(0-100.00) w/Offset, 24 V Exc
IP07. . Universal Process $2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 2 \mathrm{~mA} / 20 \mathrm{~mA} / \mathrm{Custom}$
IPT1. . Prototype Board for Custom Design
IR02 . . 3-Wire Potentiometer $1 \mathrm{~K} \Omega \min (0-\mathrm{F} . \mathrm{S}$.
IR03 ... Linear Potentiometer, 3 -wire, $1 \mathrm{~K} \Omega$ min
IR05 . Resistance $2 \mathrm{~K} \Omega$
IS01. . Strain Gage 5/10VDC் Exc., $20 / \mathbf{2} \mathbf{m} \mathbf{V} / \mathrm{V}, 4 / 6$-wire
IS02. . Pressure 5/10VDC Exc., 20/2mV/V, 4/6-wire.
IS04. . Pressure Ext Exc., 20/2mV/V, 4/6-wire
IS05. . Pressure/Load Cell $20 / 2 \mathrm{mV} / \mathrm{V}$, $5 / 10 \mathrm{~V}$ Exc 4 -wire
IS06. . .Pressure/Load Cell Ext Exc., 20/2mV/V, 4-wire.
IS07. . Pressure $20 / 2 \mathrm{mV} / \mathrm{V}$ with High Impedance and External Excitation

ANALOG OUTPUT *Add $\$ 7$ for an Output Module Carrier Board
AIC . . . Isolated 16 Bit Current Output, 4-20mA
AIV . . . Isolated 16 Bit Voltage Output, 0-10VDC

- RELAY OUTPUT

Note: R1 and R2 are located on the main board, and are generally used when only two Form A Relays or less are required and an Analogy Output is not required
R1. . . . Single 5A Form A Relay
R2. . . . Dual 5A Form A Relays

WARRANTY

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of the products which shall, within the applicable period after shipment, be returned to Texmate's facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to mase price The aforementioned provisions do not extend the original warranty period of any chase price. The aforementioned provisions do not extend the original warranty period of any
product which has been either repaired or replaced by Texmate.

RELAY OUTPUT MODULES

Note: If a meter is ordered with a Relay Output Module, but without Analog
Output, an Output Module Carrier Board for $\$ 7$ should be automatically added to the order.
OR11. One 10 Amp Form C Relay, Isolated
OR15. One 10 Amp Form C and Two 5 Amps Form A Relays
OR16. One 10 Amp Form C and One 5 Amp Form A Relays
OR12. Two 10 Amp Form C Relays, Isolated
OR14. Two 10 Amp Form C and Two 5 Amps Form A Relays
OR23 . Two 10 Amp Form C and One 5 Amp Form A Relay, Isolated.
OR31. One 5 Amp Form A Relay, Isolated
OR32 . Two 5 Amp Form A Relays, Isolated
OR33 . Three 5 Amp Form A Relays, Isolated
OR34 . Four 5 Amp Form A Relays, Isolated

Solid State Relay (SSR) Output Modules DC Only

OR51 . One 400V DC Solid State Relay (SSR) 210mA
OR52 . Two 400V DC Solid State Relays (SSR) 210mA
OR53. Three 400V DC Solid State Relays (SSR) 210mA
OR54. Four 400V DC Solid State Relays (SSR) 210 mA .

Special Options and Accessories (OA's)

Part Number
Description
SPECIAL OPTIONS (Specify Inputs or Outputs \& Req. Reading)
Output Module Carrier Board
*One carrier board must be ordered with any meter that includes any one or more of the following options: Analog Output and/or Relay Output Modules. SA-DL/OM-CB . . .Output Module Carrier Board, DL series
CR-CHANGE . . Range Change from Standard Range shown in BOLD type CS-3/3.5/4.
COA-3/3.5/4
CCL-SETUP
CCL-INSTL
CSR-SETUP
CSR-INSTL.
CSS-SETUP.
CSS-34/INSTL
COR-SETUP
COR-INSTL Custom display scaling within standard ranges Custom scaling of analog output for digital meters \& bargraphs NRC to set-up Custom Configuration file and issue serial \# Installation of custom configuration, specify serial \#CCLNRC to set-up custom selectable range
Factory installation - custom configuration, specify serial \# CSR.NRC to set-up custom special scaling.
Installation - for 3.5 and 4.0 meters, specify serial \# CSSNRC to set-up Relays in non-standard locations.

ACCESSORIES (Specify Serial \# for Custom Artwork Installation)
75-DBBZ9648F. . . .Black Bezel for $96 \times 48 \mathrm{~mm}$ Case.
75-DMTCLIPF Side Slide Brackets (2 pc) - extra set, extra
76-DL40G-N4. . . . "Touch" Green LED Faceplate, NEMA 4, Factory install
76-DL40LG-N4"Touch" Large Green LED Faceplate, NEMA4, Factory install
76-DL40LR-N4 . . . "Touch" Large Red LED Faceplate, NEMA 4, Factory instal
76-DL40R-N4
ART-FS-S/D/C "Touch" Red LED Faceplate, NEMA 4, Factory install.
ART-FS-S/D/CNRC for artwork \& set-up Faceplate/Desc/Co.Logo
ART-FS-S/DNRC for artwork \& set-up Faceplate/Desc. .
ART-FS-001 Install Custom Faceplate per meter - 1 color
OP-MTLCLIP Screw Mounting Clips (2 pc) - to screw tighten slide brackets
OP-MTL96X48Metal Surround Case, includes screw mounting clips .
OP-N4X/96X48. . . .96x48mm clear lockable front cover-NEMA 4X, splash proof
Prices subject to change without notice.

Tel: 1-760-598-9899 • USA 1-800-839-6283 • That's 1-800-TEXMATE
Fax: 1-760-598-9828 •Email: orders@texmate.com • Web: www.texmate.com

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY WHETHER OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR OTHERWISE is made beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate. Users shall determine the suitability of the product for the intended application before using, and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In no event shall
Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.

Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time

For product details visit www.texmate.com

Local Distributor Address

[^0]: Chassis Ground Tab for Optional Metal Case

