

General Features

- External transmitters or signal conditioners can be eliminated by directly connecting the sensor to more than 33 **I-Series** Plug-in Input Signal Conditioning Modules that include:
 - AC Current
 - AC Voltage
 - DC Current
 - DC Voltage
 - Load Cell
 - Pressure

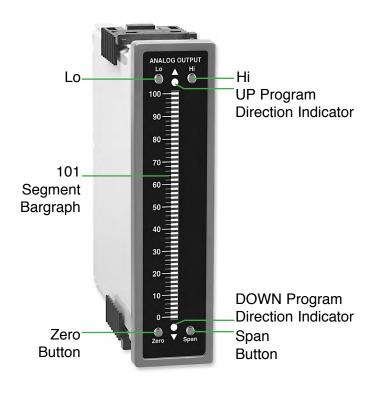
- Process
- Prototype
- Resistance
- Strain-gage
- -Temperature
- 4 to 20 mA
- Pre-calibrated I-Series Input Signal Conditioning modules, that have span or zero potentiometers, can be interchanged between any I-Series compatible meter, without recalibration, because all of the analog scaling and reference circuitry is self-contained within the module. 5 or 10 V DC excitation is provided for resistance bridge type sensors.
- 24 V DC excitation is available to power external transmitters and 5 or 10 V DC excitation is available for strain-gages, load cells and resistance bridge type sensors.
- A red or optional green 101 segment bargraph.
- Auto-sensing AC/DC power supply. For voltages between 85-265 V AC / 95-300 V DC (PS1) or 14-48 V AC / 10-72 V DC (PS2).
- Optional 16 Bit isolated analog output that can be used to drive an external process device such as a chart recorder, remote display, or for retransmission to a central control room. User or factory scalable to 4 to 20 mA, 0 to 20 mA or 0 to 10 V across any desired span from ± one bar to the full scale range
- · Center zero setting, header selectable.
- Provision for external brightness setting switch (by connecting the DIM to the GND pin on the back of the meter).
- · Smart averaging (to speed up display response).
- Optional NEMA-4 front cover.
- UL Listed

Input Module Compatibility

LYNX FAMILY: More than 33 different Plug-in I-Series Input Signal Conditioners are approved for Texmate's Lynx Family of meters. As shown on pages 10-12.

LYNX

See www.texmate.com for an up to date listing.


Specifications

Input Specs:	Depends on range and function selected
A/D Converter:	14 bit single slope
Accuracy:	±(0.05% of reading + 1segment)
Temp. Coeff.:	100 ppm/°C (Typical)
Warm up time:	2 minutes
Conversion Rate:	10 conversions per second (Typical)
Bargraph Display:	101 segment 4" vertical (std),
	horizontal (optn), red (std), green (optn)
Polarity:	Selectable center zero
Positive Overrange:	Bargraph display flashes
Negative Overrange	: First segment of bargraph display flashes
Analog Output:	Isolated 16 bit user scalable mA or V
OIC (mA out)	4-20 mA @ 0 to 500Ω max loop resistance
OIV (volts out)	. 0-10 V DC @ 500 Ω or higher resistance
Power Supply:	AC/DC Auto sensing wide range supply
PS1 (std)	85-265 VAC, 50-400Hz / 95-300 VDC @ 1.5W
PS2	14-48 V AC, 50-400Hz / 10-72 V DC @1.5W
Operating Temp.:	0 to 50°C
Storage Temp:	–20°C to 70°C
Relative Humidity:	95% (non condensing)
Case Dimensions:	3/32 DIN, Bezel: 36x144 mm(1.42"x5.69")
	Depth behind bezel: (4.64") 117.5 mm
	Plus 10 mm (0.39") for Right-angled con-
	nector, or plus 18.3 mm (0.72") for Straight-
	thru connector, or plus 26.5 mm (1.05") for
	Push-On connector.
Weight:	9.5 oz., 12 oz when packed

	In	dex	
Analog Output Scaling and Calibration 7	Functional Diagram8	Input Signal Conditioning Modules . 10-12	Panel Adapter16
Case Dimensions	General Features 1	Installation Guideline	Pin Descriptions
Center Zero Mode Scaling For Bipolar	Glossary of Programming Symbols &	One Point Quickset Rescaling and	Reset Analog output Scaling and
Inputs	Modes of Operation2	Calibration Procedure 5	Calibration7
Component Layout9	Hinged Clear Lockable Poly NEMA 4X	Opening the Case to Access Mode	Reset Scaling and Calibration 5
Connector Pinouts 8	Splash Proof Cover	Select Header4	Specifications 1
Connectors	Input Module Analog Calibration Procedures15	Ordering Information	Two Point Quickset Scaling and
Controls and Indicators2	Input Module Compatibility1	Overview of Display Modes, Scaling	Calibration 3,5
Custom Face Plates & Scales 13	Input Module Component Glossary . 14	Capabilities & Operating Modes 3	

FX-B101Q Data Sheet_UL (FX1_UL)

Controls and Indicators

Quickset Programming

This bargraph features Texmate's unique QUICKSET PROGRAMMING. When a front panel button is pressed and held down, the associated function is directly changed. The direction of change will be either up or down, as indicated by the UP and DOWN indicator LEDs. After the indicator LED lights up there is a 0.5 second delay before any change occurs. When a button is released and pressed down again the direction of change is reversed. As there are no menu or sub-menus to navigate, the programming and setup is quick and easy.

Front Panel Buttons

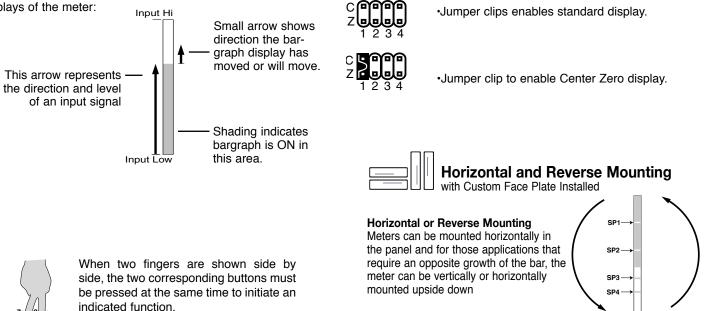
Zero Button

The Zero Button sets the low input signal scaling.

Span Button

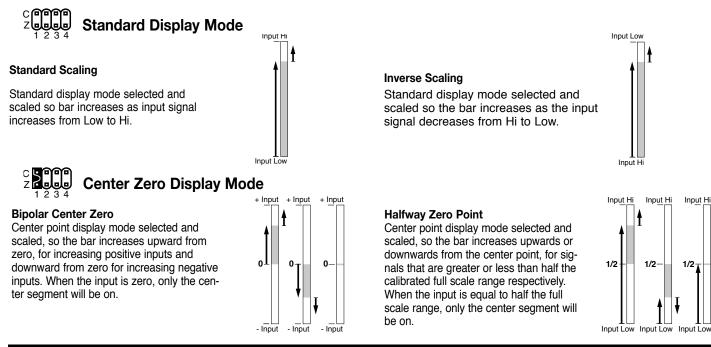
The Span Button sets the high input signal scaling.

Lo Button


The Lo Button sets the analog output low setting.

Hi Button

The Hi Button sets the analog output high setting.


Glossary of Programming Symbols and Modes of Operation

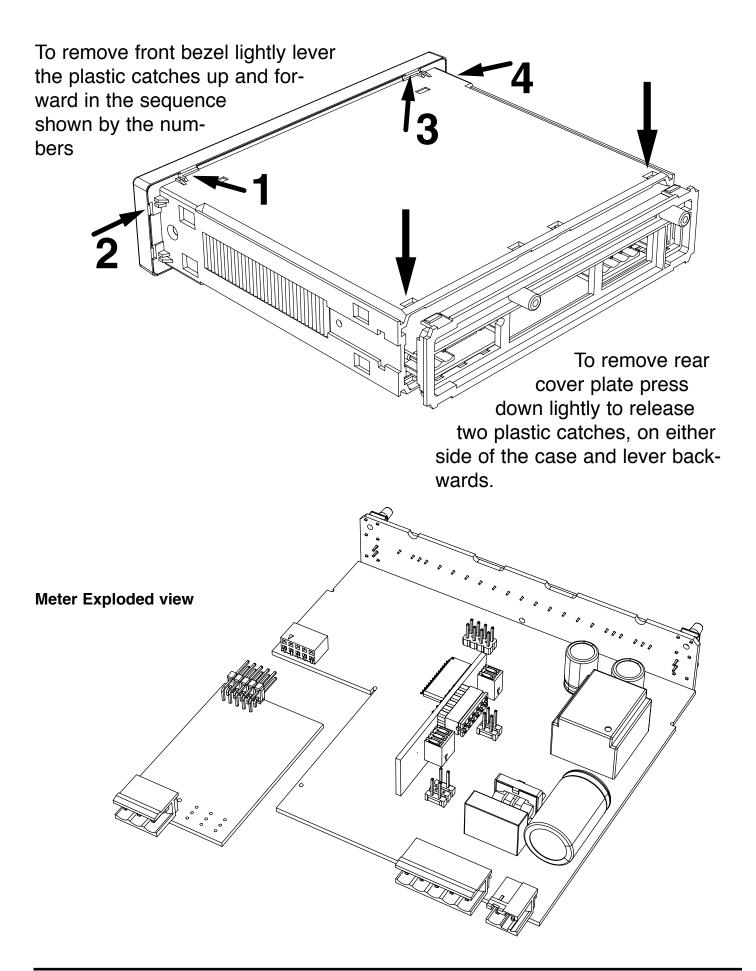
To explain software programming procedures, logic diagrams are used to visually assist in following programming steps. The following symbols are used to represent the functions and displays of the meter:

Standard or Center Zero Display Mode Select Header

Over View of Display Modes, Scaling Capabilities and Operating Modes

Two Point Quickset Scaling and Calibration

Meters with QUICKSET PROGRAMMING feature a unique, easy-to-use, two point scaling and calibration system.


Scaling or calibration is accomplished simply, by applying a zero or low input signal and adjusting the bar to the desired reading, using the ZERO button. A higher input signal is then applied, and the bar is adjusted to the desired reading for that input value, using the SPAN button.

IMPORTANT DETAILS THAT MAKE QUICKSET PROGRAMMING EASY TO USE AND UNDERSTAND

- 1. The zero and span buttons are functionally the same, except as follows: The ZERO button can initiate a scaling with input signals from zero to 95% of fullscale. The Span button can initiate a scaling with input signals from 5% of fullscale to 105% of fullscale.
- 2. When a Zero or Span button is pressed, the Up or Down indicator LED will immediately light up to show the direction, in which the Bar will move, after a 0.5 second delay. If the button is released and pressed again, the opposite Up or Down indicator will light up, and 0.5 seconds later the Bar will begin to move in that direction until the button is released. When the bar is being adjusted to zero or fullscale, the bar will automatically stop at the zero or fullscale position, and will not overshoot these positions, even if the button continues to be pressed.
- 3. While the bar is being adjusted, a new offset and scale factor is continuously being calculated. At the moment the button is released, and the scaling is accepted, the calculation data is memorized and implemented. The Scaling calculation is based on the new position of the Bar, the input signal being applied at that moment, and the previously memorized position of the Bar and the input signal that was being applied, when the other button was last released.
- 4. Positive and negative signals maybe integrated into a two point scaling. However when either a ZERO or SPAN button is pressed the input signal being applied, must be more than 5% higher or lower than the previously memorized value of the input signal, that was being applied when the other button was last released. If not, the bar will flash, the scaling will not be accepted, and the previous scaling will still be retained in memory.
- 5. Because of the requirement, that a new scaling input signal must be 5% higher or lower than the previously stored value, it can sometimes be difficult to implement a desired scaling, particularly when using a calibrator that only has fixed output values. In this case Reset the Scaling by pressing the ZERO and SPAN buttons simultaneously for two seconds. Both scaling memories will be erased and an internal default scale factor will be loaded. This provides a display of zero to fullscale on the bar for an input of approximately 0 to 100% of the range selected on the input signal conditioning module. After Resetting the Scaling a new calibration, using either button, can be implemented with new input signal values. It is good practice to always use the Zero button for lower input signals and the Span button for higher input signals, even when the bar display scale is inversed.
- 6. The larger the difference between two points used for calibration, the better the accuracy. However if the difference is too high, and the output from the input signal conditioning module is greater than +2.1VDC, or less than -1.05VDC, the bar will flash over range. The calibration will not then be accepted and, the previous scaling will still be retained in memory. In this case, either a lower input signal must be used, or a higher range on the input module should be selected to recalibrate the meter.

Note: Most input signal conditioners have provisions for analog calibration and scaling. If the meter's scale factor is set to read zero with a zero input (shorted input), and to read 10 Bars fullscale with a 2.000 V input, any pre-calibrated signal conditioner with an output that does not exceed -1 V to +2 V, will read correctly in the meter without any further calibration.

Opening the Case to Access Mode Select Header

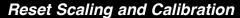
Two Point Quickset Scaling and Calibration Procedure (continued)

Note: Calibrating the bargraph requires two input signals. Using the minimum input (LO Input) and maximum input (HI Input) signals are recommended for optimal accuracy.

However, scaling can be accomplished with any two signals that are higher or lower than each other by more than 5% of the full scale and are not greater than +2.1VDC or less than -1.05VDC.

See page 10-12 for information on input modules that may be used with this meter. Confirm that the correct range and input is selected on the input signal conditioning module.

STEP A SET THE LOW INPUT SIGNAL READING ON THE BAR


- 1) Apply the LO input signal (4ma in this example) to the input pins.
- 2) Using the ZERO button adjust the bar down to the required position.

Warning: Do not press the Span button when a low signal is applied or the Zero button when a high signal is applied. Doing so will tamper with the calibration process and necessitate resetting and recalibrating the meter.

If erroneous signals or buttons are pressed, tampering with the calibration, please perform the "Reset Scaling and Calibration " procedure below, then repeat steps A and B.

STEP B SET THE HIGH INPUT SIGNAL READING ON THE BAR

1) Apply the high input signal (20mA in this example) to the input pins. Using the SPAN button, adjust the bar to the required position. This position can be higher or lower than the position adjusted in Step 2. The scaling for a 4 to 20mA input is now complete.

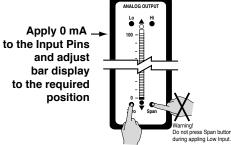
RESET THE SCALING

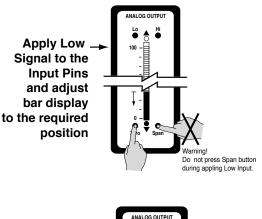
1) Apply power to the meter and press the ZERO and SPAN buttons simultaneously for 2 seconds. This erases any previously memorized scalings and resets the meter's scaling to the factory default. Factory default scaling is approximately zero to full scale for an input that is 0 to 100% of the range selected on the input signal conditioner.

One Point Quickset Rescaling and Calibration Procedure

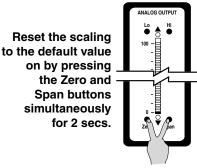
ONE POINT RECALIBRATION

As explained earlier, the FX-B101Q bargraph is calibrated using two point calibration. Once a bargraph is calibrated, the low end of the range may be then recalibrated without affecting the calibration of the high end, and vice versa.


For example, take an FX-B101Q that has been calibrated to read zero to full scale for an input of 4 to 20mA. If now the scaling has to be changed to read zero to full scale for an input of 0 to 20mA, only the low (4 mA) end needs to be recalibrated. The high (20 mA) end of the scaling is left untouched, and so does not change. The following one point recalibration procedure is used for this purpose.


STEP A RECALIBRATE THE LOW INPUT SIGNAL READING ON THE BAR

1) Apply the LO input signal (Oma in this example) to the input pins. The first segment will flash, indicating an under range condition.


- 2) Using the ZERO button adjust the bar up to the required position.
- 3) The FX-B101Q has now been recalibrated to read zero to full scale

for a 0 to 20 mA input.

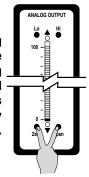
Apply Hi Signal to the Input Pins and adjust bar display to the required position Warning! Do not press Zero button during appling Hi Input.

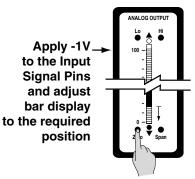
The procedure for scaling the bar graph for bipolar signals is very simple. If say CH1 has to be scaled for -1V to +1V, the steps are as follows:

STEP A SELECT THE CENTER ZERO DISPLAY MODE FOR CH1

- 1) Following the instructions on page 4, remove the meter from the case.
- 2) Select the Center Zero Mode for CH1 by repositioning the jumper clip on the Center Zero Display Mode Select Header.

STEP B REVIEW THE INPUT MODULE STATUS

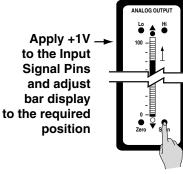

- 1) See pages 10 12 for information on input modules that may be use with this meter.
- 2) Confirm that the correct range and input is selected on the input signal conditioning module.


Note: When undertaking an initial set up and primary scaling and calibration of the meter it is best to start with a reset of the scaling.

STEP C RESET THE SCALING ON CHANNEL ONE

1) Apply power to the meter and press the ZERO and SPAN buttons simultaneously for 2 seconds. This erases any previously memorized scalings, and resets the scaling to the factory default, of approximately zero to full scale, for an input, that is 0 to 100% of the range selected on the input signal conditioner.

Reset the scaling to the default value on by pressing the Zero and Span buttons simultaneously for 2 secs.



STEP D SET THE LOW INPUT SIGNAL READING ON THE BAR

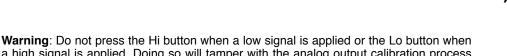
- 1) Apply the LO input signal (-1V in this example) to the input pins.
- 2) Using the ZERO button adjust the bar down to the required position. In this case, all the bar segments from mid point down to the bottom will be ON.

STEP E SET THE HIGH INPUT SIGNAL READING ON THE BAR

- 1) Apply the high input signal (+1V in this example) to the input pins.
- 2) Using the SPAN button adjust the bar to the required position. This position could be higher or lower than the position adjusted in Step 2. In this case, all the bar segments from mid point up to the top will be ON.
- 3) The scaling for an input of -1V to +1V is now complete.

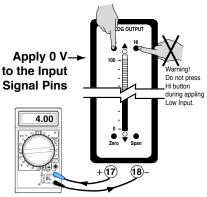
Center Zero Mode Selected

Analog Output Scaling and Calibration


When the optional analog output module is installed, an independently calibrated 16 bit isolated, voltage or current analog output is available. **The analog signal is independently scaled to the input signal and not to the bargraph display.** It is important to note that the Analog Output is completely independently of the bargraph display. This means for example that the bargraph display may be scaled to go from zero to full scale as the input changes from 0 to 5V, while at the same time, the analog output is scaled to go from 4 to 20mA as the input changes from 2 to 3V. Rescaling the bargraph or the analog output will not affect the scaling of the other.

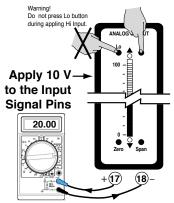
To calibrate the Analog Output you must be able to input two input signals. Usually the minimum input (LO Input) and the maximum (HI Input) signals are used for maximum accuracy.

For example: the three steps to obtain an Analog Output of 4mA to 20mA for an input of 0 to 10V are:


STEP A CALIBRATE ANALOG OUTPUT FOR LO SIGNAL

- 1) Apply the low input signal (0V in this example) to the meter.
- 2) Connect an external multimeter to the analog output pins (Pins 17 and 18).
- 3) Using the LO button adjust the analog output as measured on the external multimeter to be the required value. (4mA in this example). When the LO button is pressed, the UP or DOWN indicator LED shows the direction of change. To reverse the direction of change release the LO button and press down again. Initially the output changes very slowly, but speeds up as the LO button remains pressed down. The analog output for a low input can be set in this step to any value in the range of 0 to 20mA or 0 to 10V (if the voltage output option is selected).

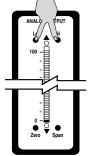
a high signal is applied. Doing so will tamper with the analog output calibration process and necessitate resetting and recalibrating the Analog Output.


If erroneous signals or buttons are pressed, tampering with the analog output calibration, please perform the "Reset Analog output Scaling and Clibration" procedure below, then repeat steps A and B.

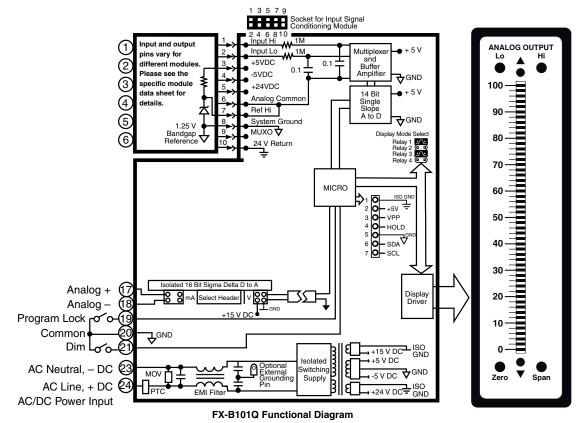
Adjust the Analog output to 4.00mA

STEP B CALIBRATE ANALOG OUTPUT FOR HI SIGNAL

- 1) Next apply the high input signal (10V in this example) to the meter.
- 2) Using the HI button, adjust the analog output as measured on the external multimeter to be the required value. (20mA in this example). When the HI button is pressed the UP or DOWN indicator LED shows the direction of change. Release the HI button and press again to reverse the direction of change. Initially the output changes very slowly, but speeds up as the HI button continues to remain pressed. This output may be higher or lower than the value set in Step 2, and may be any value in the range of 0 to 20mA or 0 to10V. This allows the easy reversal of analog output that is required in some applications.

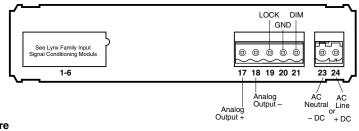

Adjust the Analog output to 20.00mA

Reset Analog Output Scaling and Calibration


RESET THE ANALOG OUTPUT SCALING

 Press the LO and HI buttons simultaneously and hold them down for 2 seconds. This will reset the analog output scaling to the default value. The default analog output scaling is approximately 0 to 20mA (0 to 10V if voltage output option is selected) for an input that is 0 to 100% of the range selected on the input signal conditioner.

Reset the analog ouput scaling by pressing the LO and HI buttons simultaneously for 2 secs.



Functional Diagram

Connector Pinouts

This meter uses plug-in type screw terminal connectors for all input and output connections. The power supply connections (pins 23 and 24) have a unique plug and socket outline to prevent cross connection. The main board uses standard right-angled connectors. Replacement 2-, 3-, and 4-pin plug connectors are available.

WARNING

AC and DC power supply voltages are hazardous. Make sure the power supply is isolated before connecting to the meter.

Pin Descriptions

Input Signal – Pins 1 to 6

Pins 1 to 6 are reserved for the input signal conditioner. See the data sheet for the selected input signal conditioner.

Pins 17 to 21 – Rear Panel Switches

Pin 17 ANALOG OUTPUT (+). mA (0 to 20 mA/4 to 20 mA) or V (0 to 10 V) output is header selectable.

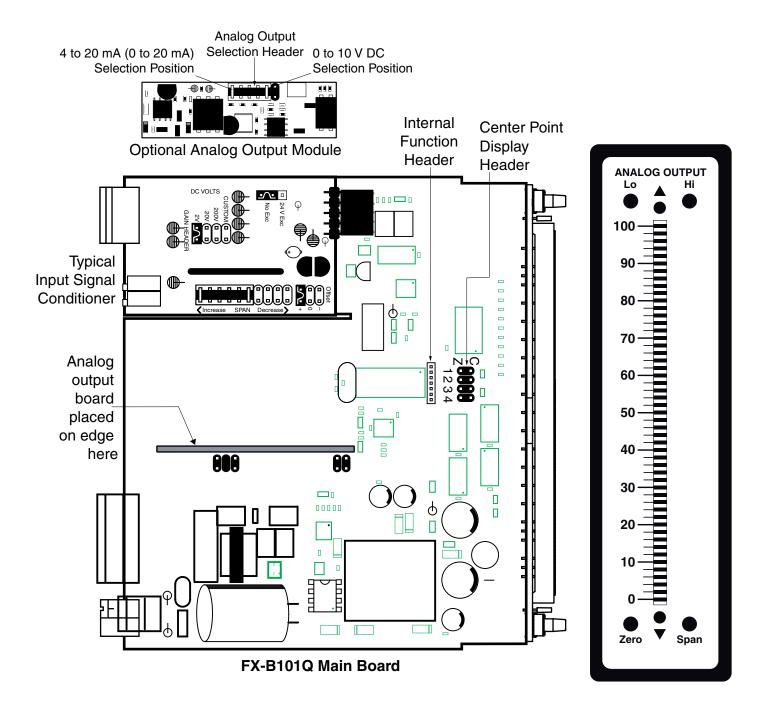
- Pin 18 ANALOG OUTPUT (-). mA (0 to 20 mA/4 to 20 mA) or V (0 to 10 V) output is header selectable.
- Pin 19 Programming LOCK. By connecting the LOCK pin to the COMMON pin, the meter's programmed parameters can be viewed but not changed.
- Pin 20 COMMON. To activate the LOCK or DIM functions from the rear of the meter, the respective pins have to be connected to the COMMON pin. This pin is connected to the internal power supply ground.
- Pin 21 **DIM.** By connecting the display dim (DIM) pin to the COMMON pin, the display brightness setting is halved.

Pins 23 and 24 – AC/DC Power Input

Auto-sensing AC/DC power supply. For voltages between 85-265 V AC, 50~400Hz / 95-300 V DC (PS1) or optional 14-48 V AC 50~400Hz / 10-72 V DC 1.5W nominal. (PS2).

Pin 23 AC Neutral / -DC. Neutral power supply line. Pin 24 AC line / +DC. Live power supply line.

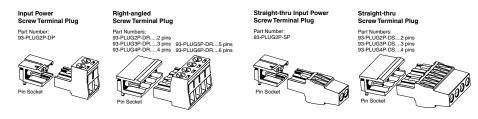
Internal Function Header Pin out



0 6

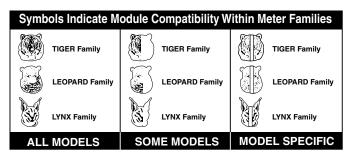
7 **O** - SCL Internal header pins 1, 2, 3, 6, and 7 are for factory settings only. Not for external use!

4 HOLD. By connecting the HOLD pin to the GND pin, the displayed reading is frozen, however, A/D conversions continue. When the HOLD pin is disconnected from the GND pin, the correct reading is displayed.

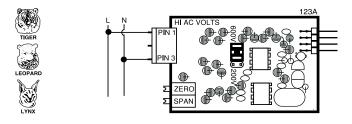

5 GND. This pin is connected to the internal power supply ground.

Connectors

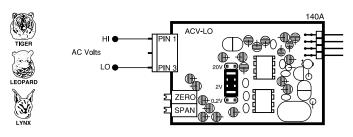
AC and DC input signals and power supply voltages can be hazardous. Do Not connect live wires to terminal blocks, and do not insert, remove or handle terminal blocks with live wires connected. Standard plug-in screw terminal blocks provided by Texmate:

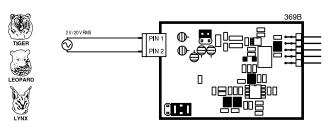


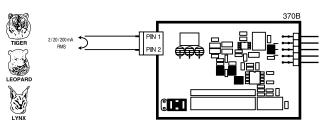
I-Series Input Signal Conditioning Modules

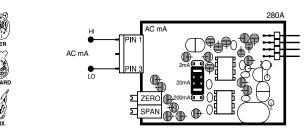

Many additional input modules are available and others are constantly being developed. Check with your local distributor or www.texmate. com for updated information.

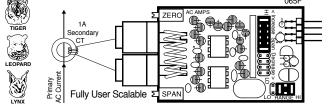
Precalibrated **I-Series** input modules, that have span or zero potentiometers, can be interchanged between any **I-Series** compatible meter, without recalibration, because all of the analog scaling and reference circuitry is self-contained within the module. Where appropriate, all the standard ranges shown are designed to be header selectable by the user, and Texmate's unique SPAN ADJUST Header facilitates scaling to almost any required engineering unit.

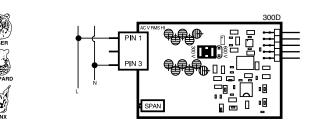

Unless otherwise specified Texmate will ship all modules precalibrated with factory preselected ranges and/or scalings as shown in **BOLD** type. Other precalibrated standard ranges or custom ranges may be ordered. Factory installed custom scaling and other custom options are also available (see Ordering Information, Special Options on last page).

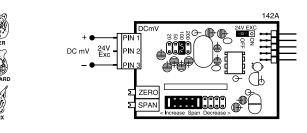

IA01: AC Volts Scaled RMS, 200/300V AC

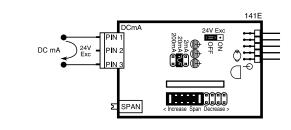

IA02: AC Volts Scaled RMS, 200mV/2V/20V AC

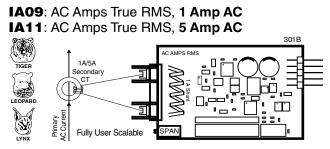

IA07: AC Volts True RMS, 200mV/2V/20V AC

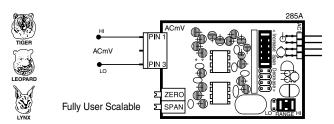

IA08: AC Milliamps True RMS, 2/20/200mA AC

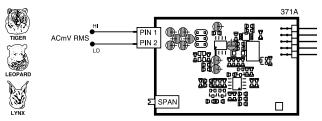

IA03: AC Milliamps Scaled RMS, 2/20/200mA AC

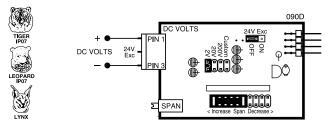

IA04: AC AC Amps Scaled RMS, 1 Amp AC IA05: AC AC Amps Scaled RMS, 5 Amp AC

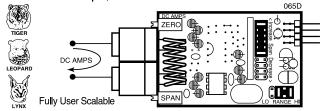

IA06: AC Volts True RMS, 300V AC

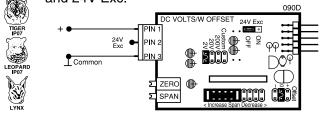

ID02: DC Millivolts, 20/50/100/200mV DC w/24V DC Exc

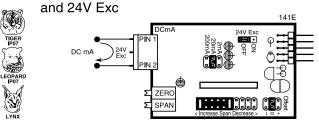

ID03: DC Milliamps, 2/20/200mA DC w/24V DC Exc

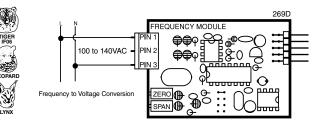

I-Series Input Signal Conditioning Modules Continued

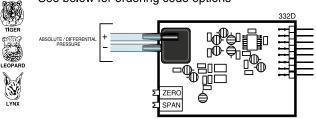

IA10: AC Millivolts, Scaled RMS, 100mV AC

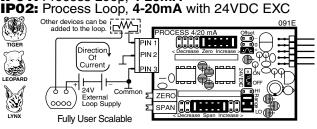

IA12: AC Millivolt RMS Sigma Delta

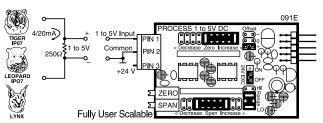

ID01: DC Volts, 2/20/200V/Custom w/24V DC Exc

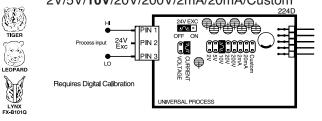

ID04: DC Amps, 5A DC ID09: DC Amps, 1A DC


ID05: DC Volts 2/20/200/Custom V DC with Offset and 24V Exc.

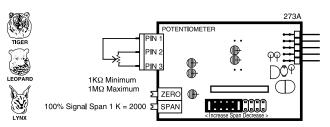

ID07: DC Milliamps, 2/20/200mA DC with Offset


IF02: Line Frequency

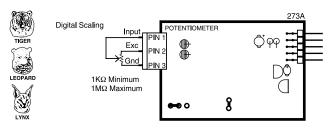

IGYZ: Universal Direct Pressure (Absolute or Differential/Gage) See below for ordering code options

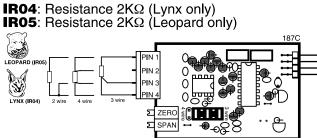

IP01: Process Loop, 4-20mA

IP03: Process Input, 1-5V DC with Offset, 24V Exc

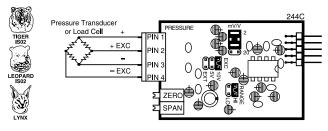


IP07: Universal Process Input 2V/5V/10V/20V/2mA/20mA/Custom

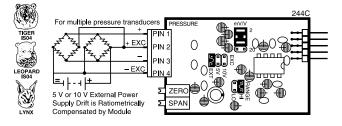


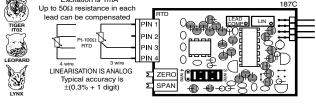

I-Series Input Signal Conditioning Modules Continued

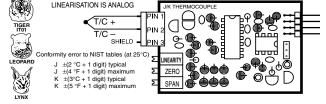
IR02: 3 wire Potentiometer 1K Ω min (0-F.S.)



IR03: Linear Potentiometer $1K\Omega$ min




IS05: Pressure/Load Cell 20/2mV/V, 5/10V Exc 4-wire



IT03: RTD, 100Ω Pt. 2/3/4-wire (-200 to 800°C) **IT04:** RTD, 100Ω Pt. 2/3/4-wire (-200 to 1470°F) **IT05:** RTD, 100Ω Pt. 2/3/4-wire (-199.9 to 199.9°F) **IT14:** RTD, 100Ω Pt. 2/3/4-wire (-199.9 to 199.9°C) Excitation is 1mA

IT06: Thermocouple, J Type (0-1400 °F) **IT08:** Thermocouple, J Type (0-760 °C) 271D LINEARISATION IS ANALOG T/C + TIGER T/C SHIELD nity error to NIST tables (at 25°C) INEARITY 5 ZERO DD SPAN IT07: Thermocouple, K Type (0-1999 °F) IT09: Thermocouple, K Type (0-1260 °C) 2720 LINEARISATION IS ANALOG

Installation Guidelines

1. Install and wire meter per local applicable codes/regulations, the particular application, and good installation practices.

2. Install meter in a location that does not exceed the maximum operating temperature and that provides good air circulation.

3. Separate input/output leads from power lines to protect the meter from external noise. Input/output leads should be routed as far away as possible from contactors, control relays, transformers and other noisy components. Shielding cables for input/output leads is recommended with shield connection to earth ground near the meter preferred.

4. A circuit breaker or disconnect switch is required to disconnect power to the meter. The breaker/switch should be in close proximity to the meter and marked as the disconnecting device for the meter or meter circuit. The circuit breaker or wall switch must be rated for the applied voltage (e.g., 120VAC or 240VAC) and current appropriate for the electrical application (e.g., 15A or 20A).

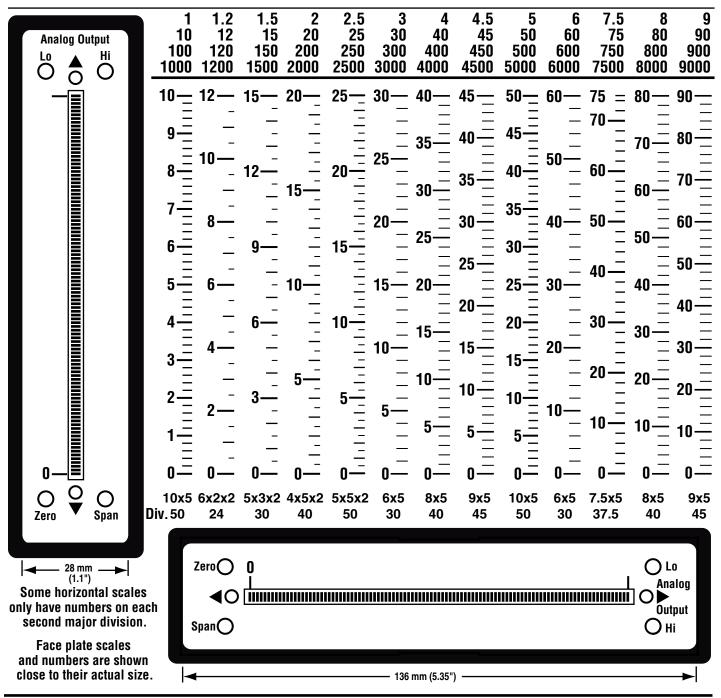
5. See Case Dimensions section for panel cutout information.

6. See Connector Pinouts section for wiring.

7. Use 28-12 AWG wiring, minimum 90 $^{\circ}\mathrm{C}$ (HH) temperature rating. Strip wire approximately 0.3 in. (7-8 mm).

8. Recommended torque on all terminal plug screws is 4.5 lb-in (0.51 N-m).

Custom Face Plates and Scales


- Custom face plates have a non-recurring artwork charge. A serial number is then assigned to each artwork, to facilitate re-ordering. We prefer custom logos and special artwork to be supplied in an Illustrator or Photoshop file format.
- Small Run or One-Off custom face plates incur an installation charge, and are generally printed on a special plastic film, which is then laminated to custom faceplate blanks as required.
- Large Run (300 pieces min): custom face plates are production silk screened, issued a part number, and held in stock for free installation as required by customer orders.

Part Number	Description
Small Run Custom F	ace plates for Bargraphs
ART-NRC-DES	Small run NRC custom faceplate design
ART-FS1	Small run custom Faceplate - 1 color
ART-FS2	Small run custom Faceplate - 2 color
ART-FS3	Small run custom Faceplate - 3 color
ART-FS4	Small run custom Faceplate - 4 color
ART-FS5	Small run custom Faceplate - 5 color
Specify artwork seria	I number when ordering face plate installation.
ie: AFB-XXXXX	

Large Run Custom Face plates for Bargraphs

ART-NRC-FILM Large run NRC custom faceplate design & films
ART-FPMAINTInventory management fee for 2 years
ART-FL1Large run 300pcs custom faceplate - 1 color
ART-FL2Large run 300pcs custom faceplate - 2 color
ART-FL3 Large run 300pcs custom faceplate - 3 color
ART-FL4 Large run 300pcs custom faceplate - 4 color
ART-FL5Large run 300pcs custom faceplate - 5 color

When ordering Large Run Face plates to be installed specify the custom part number issued for each different artwork. ie: 77-FLXXXXX

Dual input modules, and those modules exclusively compatible with the Leopard or Tiger Families, do not have zero and span adjustments. These modules are scaled and calibrated using the internal software functions of each individual meter.

Input and Output Pins

On most modules Pin 1 is the Signal High input and Pin 3 is the Signal Low input. Typically Pin 2 is used for Excitation Voltage output.

24 V DC Output for 4-20 mA Header

On some modules this header enables a 24 V DC 25 mA (max) Excitation/Auxiliary output to be connected to Pin 2 that can power most 4-20 mA process loop sensors.

INPUT RANGE Headers

Range values are marked on the PCB. Typically two to eight positions are provided, which are selected with either a single or multiple jumper clip. When provided, a custom range position is only functional when the option has been factory installed.

SPAN Potentiometer (Pot)

If provided, the 15 turn SPAN pot is always on the right side (as viewed from the rear of the meter). Typical adjustment is 20% of the input signal range.

SPAN ADJUST Header

This unique five-position header expands the adjustment range of the SPAN pot into five equal 20% steps, across 100% of the input Signal Span. Any input Signal Span can then be precisely scaled down to provide any required Display span from full scale to the smallest viewable unit.

SPAN Adjust	<pre>> 3 4 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>							
Header position	1	2	3	4	5			
SPAN Pot %	20%	20%	20%	20%	20%			
Signal Span %	20%	40%	60%	80%	100%			

Equivalent

SPAN RANGE Header

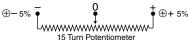
When this header is provided it works in conjunction with the SPAN ADJUST Header by splitting its adjustment range into a Hi and a Lo range. This has the effect of dividing the adjustment range of the SPAN pot into ten equal 10% steps across 100% of the input Signal Span.

SPAN Adjust			Adjust H 3 9 Span Inc	Š s	ipan Rai				se Span Ir		
Header position	1	2	3	4	5		1	2	3	4	5
SPAN Pot %	10%	10%	10%	10%	10%		10%	10%	10%	10%	10%
Signal Span %	10%	20%	30%	40%	50%		60%	70%	80%	90%	100%
Equivalent Circuit Acts like a 150 Turn Potentiometer Olnput LO Low Range High Range Input HIO											

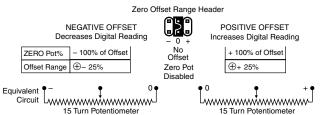
Sensor Break Detect ON Soft

Function Select Headers

On some modules various functions such as Amps and Volts, 4 wire and 6 wire, or cold junction compensation are selected by header positions that are marked on the PGB.


Excitation Output Select Headers

When excitation outputs are provided, they are typically 5 V DC max 30 mA, 10 V DC max 30 mA (300Ω or higher resistance) or external supply. They are selected by either a single or multiple jumper clip.


ZERO Potentiometer (Pot)

If provided, the ZERO pot is always to the left of the SPAN pot (as viewed from the rear of the meter). Typically it enables the input signal to be offset $\pm 5\%$ of the full scale display span.

ZERO OFFSET RANGE Header

When provided, this three position header increases the ZERO pot's capability to offset the input signal, by $\pm 25\%$ of the full scale display span. For example a Negative offset enables a 1 to 5 V input to display 0 to full scale. The user can select negative offset, positive offset, or no offset (ZERO pot disabled for two step non-interactive span and offset calibration).

ZERO ADJUST Header

When this header is provided, it works in conjunction with the ZERO OFFSET RANGE Header, and expands the ZERO pot's offset capability into five equal negative steps or five equal positive steps. This enables virtually any degree of input signal offset required to display any desired engineering unit of measure.

			Adjust H TIVE O 3 e Zero De		Range	e F) offset Header		Adjust H TIVE O 3 e Zero Inc		
ZERO Adjust Header Position	5	4	3	2	1		1	2	3	4	5
ZERO Pot Span	6400	6400	6400	6400	6400	1	6400	6400	6400	6400	6400
	-25200	-18900	-12600	-6300	0	1	0	+6300	+12600	+18900	+25200
Offset Range	to	to	to	to	to		to	to	to	to	to
L	-31600	-25300	-19000	-12700	-6400	ιL	+6400	+12700	+19000	+25300	+31600

CALIBRATE position, Zero Pot disengaged (no offset applied)

Tiger, Leopard and Q-Series Lynx meters have software calibration and scaling functions that can expand or be used in conjunction with the analog capabilities of any compatible modules.

Note: I-Series modules with analog calibration and scaling capability can be interchanged between any compatible meter without recalibration. However, meters that also have software scaling and calibration capabilities such as meters in the Leopard and Tiger families or Lynx

Q-Series (Quickset programming), must have their software scaling set to unity gain.

Basic standard range calibration of direct reading modules that utilize either Auto Zero or a ZERO pot, an INPUT RANGE Header and or a SPAN pot.

- 1 If the module has an INPUT RANGE Header, reposition the jumper clip to select the desired input signal range.
- Apply a zero input or short the input pins. The display will auto zero, or if the module has a ZERO pot, it should be adjusted until the display reads zero.
- 3 Apply a known input signal that is at least 20% of the full scale input range and adjust the SPAN pot until the display reads the exact input value. The Lynx family of Q meters can accept negative signals also, and may be scaled for inputs from -50% to +100% of the range selected on the input signal conditioning module.

Wide range scaling, in engineering units not requiring offsets, with modules that utilize auto-zero or a ZERO pot, a SPAN RANGE Header and or a SPAN ADJUST Header.

Texmate's unique SPAN ADJUST and SPAN RANGE Headers provide the circuit equivalent of an ultra-precision one megohm 75 or 150 turn potentiometer that can infinitely scale down any Input Signal SPAN to provide any Display Span from full scale to the smallest viewable unit.

If the module has an INPUT RANGE Header, and the required full scale Display Span (digital counts or bargraph segments) is to be larger than the directly measured value of the input Signal Span, then the next lower range on the INPUT RANGE Header should be selected. The resulting over range Signal Span is then scaled down, by selecting the position of the SPAN RANGE Header and or the SPAN ADJUST Header, which will reduce the input Signal Span to a percentage, that the required Display Span can be reached by calibration with the SPAN pot.

Example A: Using a FX-B101Q bargraph meter

Input signal 0 to 10 V to read zero to full scale.

Signal Span = 10 V, Display Span = 100 segments

- Select the 2 V INPUT RANGE Header position. The standard direct scaling will provide a display of 100 segments with an input of only 2 V which is (2÷10) =20% of the examples 10 V Signal Span.
- 2 To scale down the Signal Span to 20% select the 20% Signal Span position on the SPAN ADJUST Header (position 1) or if the module has a SPAN RANGE Header, select (LO Range) and 20% Signal Span position on the SPAN ADJUST Header (position 2).
- 3 Apply a zero input or short the input pins. The display will auto zero, or if the module has a ZERO pot, it should be adjusted until the display reads zero.
- 4 Apply 10 V and adjust the SPAN pot until the display reads full scale.

Large offset scaling and calibration of process signal inputs with modules that utilize ZERO ADJUST Headers and or ZERO OFFSET RANGE Headers.

Texmate's unique ZERO OFFSET RANGE Header enables the use of a simple two step scaling and calibration procedure for those process signals that require large offsets. This eliminates the back and forth interaction, between zero and span settings, that is often required to calibrate less finely engineered products.

The first step is to set the ZERO OFFSET RANGE Header to the center position (No Offset) and scale down the Input Signal Span to a percentage that will enable calibration with the SPAN pot to reach the required Display Span.

The second step is to set the ZERO ADJUST and or ZERO OFFSET RANGE Header to provide a positive or negative offset so that calibration with the ZERO pot will offset the Display Span to produce the required display reading.

Example B: Using a FX-B101Q Bargraph meter.

Input signal 1 to 5 V to read zero to full scale.

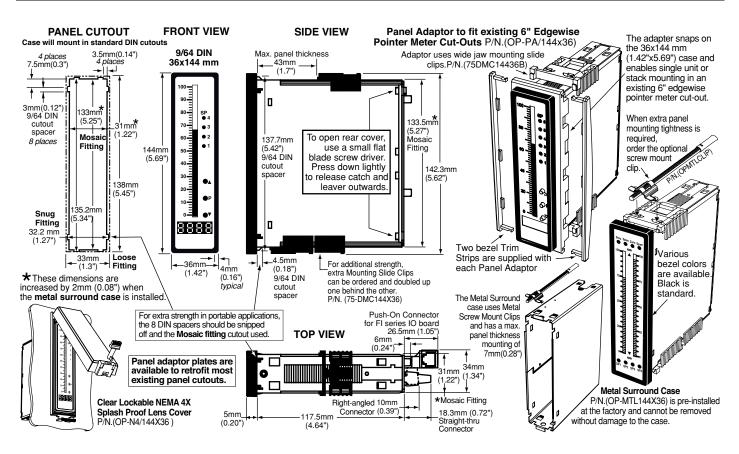
Signal Span = 4 V, Display Span = 100 segments

- 1 If the module has an INPUT RANGE Header the 2 V position should be selected. This will provide a display of 101 segments for an input of 2 V which is $(2 \div 4) = 50\%$ of the examples 4 V signal span. To scale down the Signal Span to 50% select the next higher 60% Signal Span position on the SPAN ADJUST Header (position 3).
- 2 If the module is a Process Input 1-5 V DC type, select the (Hi Range) position on the SPAN RANGE Header and the 100% Signal Span position on the SPAN ADJUST Header (position 5, max increase). This will provide a display of 101 segments for an input of 4 V which is 100% of the examples 4 V Signal Span.
- 3 Set the ZERO OFFSET RANGE Header to the center position (no offset). Apply 1 V and adjust the SPAN pot until the display reads 25 segments . A 4 V input would then read 100 segments.
- 4 Set the ZERO OFFSET RANGE Header to the negative offset position. If the module has a ZERO ADJUST Header select the position that will provide a negative offset of \approx 25 segments. Apply 1 V and adjust the ZERO pot until the display reads zero. Apply 5 V and check that the display reads full scale.

Example C: Using a FX-B101Q Bargraph meter

Input signal 4 to 20 mA to read zero to full scale

Signal Span = 16 mA, Display Span = 100 segments


- 1 The full scale Signal Span of the Process Input 4-20 mA modules is 0 to 20 mA for a full scale Display Span of 0 to 100 segments.
- 2 Select the (Lo Range) Position on the Span Range Header and the 70% Signal Span position on the SPAN ADJUST Header (position 2).
- 3 Set the ZERO OFFSET RANGE Header to the center position (no offset). Apply 4 mA and adjust the SPAN pot until the display reads 25 segments. A 16 mA input would then read 100 segments.
- 4 Set the ZERO OFFSET RANGE Header to the positive offset position. If the module has a ZERO ADJUST Header select the position that will provide a negative offset of \approx –25 segments. Apply 4 mA and adjust the ZERO pot until the display reads zero. Apply 20 mA and check that the display reads full scale.

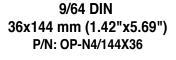
P.N. OPMIL Fits 6" Edgewise Pointer Meter Cut-Outs Adapter uses wode jaw When extra panel mouting slide clips. mounting tightness P/N (75-DMC14436B) The adapter snaps on the 36x144 mm is required, order the optional screw mount clip (1.42"x5.69") case and enables single unit or stack mounting in an existing 6" edgewise pointer meter cut-out. Fits existing cut-outs for 6" (150 mm) edgewise switchboard pointer meters from: Ô 0 0 Crompton 0 • G.E. Westinghouse Yokogawa and most others Width: 43.7 mm to 48 mm (1.72") to (1.89") Height: 143.4 mm to 149 mm (5.62") to (5.88") Two bezel trim strips are provided with each adapter to finish off the edge of each individually **Panel Adapter** mounted meter or the edge of Part #: OP-PA/144X36 each stack mounted array. 1500 120 -900 ö ö C 0 05 and an advantage and an advantage of 0 04 luunuunuluunuu 04 04 03 03 03 02 02 -500 02 01 01 0 400 Q ര 300 = Ø ര ര ര 200 -ര് ò 100= 0

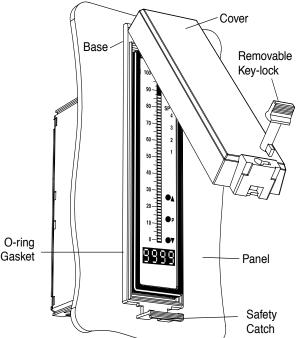
Texmate's panel adapter enables modern DIN meters to fit in existing cutouts individually or stacked when replacing old 6" edgewise mechanical pointer meters.

Panel Adapter

Case Dimensions

Hinged Clear Lockable Polycarbonate NEMA 4X Splash Proof Cover


This rugged, impact resistant, clear lens cover is designed to be dust and water proof to NEMA 4 and IP65 standards. The lens cover consists of a base and cover with a cam hinge and key-lock locking device.


An O-ring, or neoprene gasket forms a seal between the base and the panel. When opened, a cam hinge prevents the cover from closing until pushed closed.

The cover has a tapered recess that, when closed, forms a capillary seal with a tapered ridge on the base. A capillary seal is created when capillary action causes a small amount of water to be drawn in between the two surfaces producing a water tight film around the sealing area.

For those applications, such as food processing, where fluid residues are unacceptable, apply a light coating of clear silicone grease, or other approved sealant to the mating grove to prevent any ingress of liquid and enable the cover to withstand steam cleaning.

Turning the key-lock tightens the cover to the base, ensuring seal integrity. A safety catch keeps the cover closed even when the key is turned to the open position and removed. The keyhole can also be used to attach a safety seal clip, preventing unauthorized opening.

Ordering I	nformation								
E	BASE MODEL #	DISPLAY	POWER SUPPLY	INPUT MODULES	ANALOG OUT	PUT OPTIONS / ACCESSOF	IES		
	FX-B101Q -	• •			-	— OA]		
		rent special opt	ions and or access	sories that you may	y require to be	ed. The last suffix is to included with this proc	luct.		
► BASE MODEL N FX-B1010144x	UMBER 36mm, Lynx, 101 Segmen	t Bargraph				2mV/V, 5/10V Exc 4-wire.			
	ons for this Model N	• •		IS06 Pressure	e/Load Cell Ext E	Exc., 20/2mV/V, 4-wire			
Order Code Suffix	Description		List	IT03… RTD, 100Ω Pt. 2/ 3 /4-wire (-200 to 800°C)					
HR 101 Segme VG 101 Segme	ent Red LED Bargraph, V ent Red LED Bargraph, I ent Green LED Bargraph ent Green LED Bargraph	Horizontal		IT07Thermov IT08Thermov IT09Thermov	couple, K Type (couple, J Type (couple, K Type (D-1400 °F) D-1999°F) D-760 °C) O-1260°C) r 4-wire (-199.0 to 199.0°	· · · · · · · · · · · · · · · · · · ·		
	, / 95-300VDC /10-72VDC				16 Bit Current C	Dutput, 4-20mA Dutput, 0-10VDC			
► INPUT MODULE	ES (Partial List. See www.te	exmate.com)							
	ecified Texmate will ship a		prated with facto-	Special Opti	ons and Acce	essories			
IÁO1 AC-Volts S	s and/or scalings as show caled RMS, 200/ 300 AC caled RMS, 200mV/ 2V /2	3		Part Number		Description	List		
IA03 AC-mA Sca IA04 AC-Amps S IA05 AC-Amps S IA06 AC-Volts Tr	aled RMS, 2/20/200mA Scaled RMS, 0-1 Amp / Scaled RMS, 0-5 Amp / Tue RMS, 200/300V AC rue RMS, 200mV/2V/20	AC	· · · · · · · · · · · · · · · · · · ·	ZR	. Calibrated Ran	uts or Outputs & Req. Reading ge Change to another Sta of analog output for Q-series ba	, ndard Range		
IA09 AC-Amps IA10 AC-Millivolt IA11 AC-Amps IA12 AC-Millivolt	e RMS, 2/20/200mA AC True RMS, 0-1 Amp AC , Scaled RMS, 100mV / True RMS, 0-5 Amp AC , True RMS, 100mV AC 2/20/200V/Custom w/24	(0-100.00) AC	· · · · · · · · · · · · · · · · · · ·	75-DMC14436B 75-DMC144X36 93-PLUG2P-DP.	Side Slide Bra Side Slide Bra Extra Screw Te	for Custom Artwork Installation) ckets-Wide opening (2 pc) ckets-stand. (2 pc) - extra s erminal Conn., 2 Pin Power erminal Conn., 2 Pin Plug.	set		

. AC-Millivolt, Scaled RMS, 100mV AC		75-DIVIC 14436B Side Silde Brackets-wide opening (2 pc)
. AC-Amps True RMS, 0-5 Amp AC (0-100.00)		75-DMC144X36Side Slide Brackets-stand. (2 pc) - extra set
. AC-Millivolt, True RMS, 100mV AC		93-PLUG2P-DP Extra Screw Terminal Conn., 2 Pin Power Plug
. DC-Volts, 2/20/200V/Custom w/24V DC Exc		93-PLUG2P-DR Extra Screw Terminal Conn., 2 Pin Plug
. DC-Millivolt, 20/50/100/200mV DC w/24V DC Exc		93-PLUG3P-DR Extra Screw Terminal Conn., 3 Pin Plug
. DC-Milliamp, 2/20/200mA DC w/24V DC Exc		93-PLUG4P-DR Extra Screw Terminal Conn., 4 Pin Plug
. DC-Amps, 5A DC		93-PLUG5P-DR Extra Screw Terminal Conn., 5 Pin Plug
. DC-Volts 2/20/200/Custom V DC w/Offset and 24V Exc		DN.CAS144X36 Complete 144x36mm Case with Bezel
. DC-Milliamp, 2/20/200mA DC w/Offset and 24V Exc		75-DBZ144X36Black Bezel for 144x36mm Case
. DC-Amps, 1A DC		OP-MTL144x36 Metal Surround Case, includes screw mounting clips
. Line Frequency, 50-500VAC, 199.9Hz, or optional 400Hz		OP-MTLCLIP Screw Mounting Clips (2 pc) - to screw tighten slide brackets
. Universal Direct Pressure	1	OP-N4/144X36 144x36mm clear lockable front cover-NEMA 4X, splash proof.
. Process Loop, 4-20mA(0-100.00)		OP-PA/144X36 Panel Adapter for 144x36mm from 6 inch cutout
. Process Loop, 4-20mA(0-100.00) w/24VDC Exc		
. Process Input, 1-5V DC(0-100.00) w/Offset, 24V Exc		For Oustan Ford Distance and Ocales and some 10
. Universal Process 2V/5V/10V/20V/200V/2mA/20mA/Custom .		For Custom Face Plates and Scales see page 13.
. Prototype Board for Custom Design		Prices subject to change without notice.
. 3-Wire Potentiometer 1KΩ min (0-F.S.)		i nees subject to change without notice.
. Linear Potentiometer, 3-wire, 1KΩ min		

WARRANTY

ID02 ..

ID03 ..

ID04 ..

ID05 ..

ID07 ..

ID09 ..

IF02... IGYZ..

IP01 . . IP02 . . IP03 . .

IP07 . . IPT1 . .

IR02 .. IR03 ..

Texmate warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. Texmate's obligations under this warranty are limited to replacement or repair, at its option, at its factory, of any of the products which shall, within the applicable period after shipment, be returned to Texmate's facility, transportation charges pre-paid, and which are, after examination, disclosed to the satisfaction of Texmate to be thus defective. The warranty shall not apply to any equipment which shall have been repaired or altered, except by Texmate, or which shall have been subjected to misuse, negligence, or accident. In no case shall Texmate's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has been either repaired or replaced by Texmate.

USER'S RESPONSIBILITY

We are pleased to offer suggestions on the use of our various products either by way of printed matter or through direct contact with our sales/application engineering staff. However, since we have no control over the use of our products once they are shipped, NO WARRANTY WHETHER OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR OTHERWISE is made beyond the repair, replacement, or refund of purchase price at the sole discretion of Texmate. Users shall determine the suitability of the product for the intended application before using, and the users assume all risk and liability whatsoever in connection therewith, regardless of any of our suggestions or statements as to application or construction. In no event shall Texmate's liability, in law or otherwise, be in excess of the purchase price of the product.

Texmate cannot assume responsibility for any circuitry described. No circuit patent or software licenses are implied. Texmate reserves the right to change circuitry, operating software, specifications, and prices without notice at any time.

FX-B01Q Technical Manual Copyright © 2020 Texmate Inc. All rights reserved. Published by: Texmate Inc. USA. Information in this Technical Manual is subject to change without notice due to correction or enhancement. The information described in this manual is proprietary to Texmate, Inc. and may not be copied, reproduced or transmitted, in whole or in part, in connection with the design, manufacture, or sale of apparatus, device or private label product without the express written consent of Texmate, Inc.

1934 Kellogg Ave., Carlsbad, CA 92008 Tel: 1-760-598-9899 • 1-800-TEXMATE Fax: 1-760-598-9828 • Email: orders@texmate.com